Menu Close

Category: None

Question-213034

Question Number 213034 by MrGaster last updated on 29/Oct/24 Commented by MrGaster last updated on 29/Oct/24 English: The diagram shows that if $AB > AC$, and $BD = CE$, $\angle BCD = \angle CBE$, find the measure of $\angle CFE$. Japanese: グラフによると、$AB>AC$で、$BD = CE$,$\angle BCD = \angle CBE$の場合、$\angle CFE$の測定値を求めます。 Commented by mr W last updated on 29/Oct/24…

can-t-find-coefficient-f-n-of-Y-z-formal-power-series-of-Y-z-is-Y-z-h-0-Y-h-h-z-h-But-can-t-generalize-coeff-Y-h-series-representation-

Question Number 213007 by issac last updated on 29/Oct/24 $$\mathrm{can}'\mathrm{t}\:\mathrm{find}\:\:\mathrm{coefficient}\:{f}^{\left({n}\right)} \left(\alpha\right)\:\mathrm{of}\:{Y}_{\nu} \left({z}\right) \\ $$$$\mathrm{formal}\:\mathrm{power}\:\mathrm{series}\:\mathrm{of}\:{Y}_{\nu} \left({z}\right)\:\mathrm{is} \\ $$$${Y}_{\nu} \left({z}\right)=\underset{{h}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{Y}_{\nu} ^{\left({h}\right)} \left(\alpha\right)}{{h}!}\left({z}−\alpha\right)^{{h}} \\ $$$${But}..\:\mathrm{can}'\mathrm{t}\:\mathrm{generalize}\:\mathrm{coeff}\:{Y}_{\nu} ^{\left({h}\right)}…

n-1-1-n-1-n-2-1-

Question Number 212925 by MrGaster last updated on 27/Oct/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\:\sqrt{{n}^{\mathrm{2}} +\mathrm{1}}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Proving-0-1-f-x-dx-f-0-f-1-2-1-32-

Question Number 212935 by MrGaster last updated on 27/Oct/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Proving}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mid\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}−\frac{{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)}{\mathrm{2}}\mid\leqslant\frac{\mathrm{1}}{\mathrm{32}} \\ $$$$ \\ $$ Answered by mehdee7396 last updated…

sin10x-sin-x-dx-

Question Number 212886 by MrGaster last updated on 26/Oct/24 $$\int\frac{\mathrm{sin10}{x}}{\mathrm{sin}\:{x}}{dx}. \\ $$ Answered by Ghisom last updated on 26/Oct/24 $$\int\frac{\mathrm{sin}\:\mathrm{10}{x}}{\mathrm{sin}\:{x}}{dx}= \\ $$$$=\mathrm{4}\int\mathrm{cos}\:{x}\:\left(\mathrm{cos}\:\mathrm{8}{x}\:+\mathrm{cos}\:\mathrm{4}{x}\:+\frac{\mathrm{1}}{\mathrm{2}}\right){dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\right] \\…