Menu Close

Category: None

PLS-HELP-we-want-to-prove-lim-h-0-x-h-n-x-n-h-n-x-n-1-by-using-the-argument-def-gt-0-gt-0-s-t-x-lt-f-x-L-lt-Now-we-want-to-show-that-for-all-

Question Number 227509 by Lara2440 last updated on 06/Feb/26 $$\boldsymbol{\mathrm{PLS}}\:\boldsymbol{\mathrm{HELP}}!!!!! \\ $$$$\mathrm{we}\:\mathrm{want}\:\mathrm{to}\:\mathrm{prove}\:\underset{{h}\rightarrow\mathrm{0}^{\pm} } {\mathrm{lim}}\:\frac{\left({x}+{h}\right)^{{n}} −{x}^{{n}} }{{h}}={n}\centerdot{x}^{{n}−\mathrm{1}} \:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\boldsymbol{\epsilon}-\boldsymbol{\delta}\:\mathrm{argument} \\ $$$$\mathrm{def}.\:\forall\boldsymbol{\epsilon}>\mathrm{0}\:,\:\exists\boldsymbol{\delta}>\mathrm{0}\:\mathrm{s}.\mathrm{t}.\:\mid{x}−\alpha\mid<\boldsymbol{\delta}\:\Rightarrow\mid{f}\left({x}\right)−{L}\mid<\boldsymbol{\epsilon} \\ $$$$\mathrm{Now},\:\mathrm{we}\:\mathrm{want}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\mathrm{for}\:\mathrm{all}\:\boldsymbol{\epsilon}>\mathrm{0}\:,\:\mathrm{Exist}\:\boldsymbol{\delta}>\mathrm{0}\:\mathrm{s}.\mathrm{t}.\:\mid{x}−\alpha\mid<\boldsymbol{\delta}\:\:\mathrm{Implies}\:\mid\frac{{x}^{{n}} −\alpha^{{n}} }{{x}−\alpha}−{n}\centerdot\alpha^{{n}−\mathrm{1}}…

prove-lim-h-0-x-h-n-x-n-h-n-x-n-1-for-all-gt-0-Exist-gt-0-such-that-0-lt-x-lt-Implies-f-x-f-x-f-1-lt-let-s-f-x-x-n-gt-0-gt-0-such-that-0-

Question Number 227487 by Lara2440 last updated on 06/Feb/26 $$\mathrm{prove}\:\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({x}+{h}\right)^{{n}} −{x}^{{n}} }{{h}}={n}\centerdot{x}^{{n}−\mathrm{1}} \\ $$$$\mathrm{for}\:\mathrm{all}\:\epsilon>\mathrm{0}\:\mathrm{Exist}\:\delta>\mathrm{0}\:\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\mathrm{0}<\mid{x}−\xi\mid<\delta\:\:\mathrm{Implies}\:\mid\frac{{f}\left({x}\right)−{f}\left(\xi\right)}{{x}−\xi}−{f}^{\left(\mathrm{1}\right)} \left(\xi\right)\mid<\epsilon \\ $$$$\mathrm{let}'\mathrm{s}\:{f}\left({x}\right)={x}^{{n}} \: \\ $$$$\forall\epsilon>\mathrm{0}\:,\:\exists\delta>\mathrm{0}\:\mathrm{such}\:\mathrm{that}\:\mathrm{0}<\mid{x}−\xi\mid<\delta\:\rightarrow\:\mid\frac{{x}^{{n}} −\xi^{{n}} }{{x}−\xi}−{n}\xi^{{n}−\mathrm{1}}…

Let-f-x-1-q-x-p-q-p-q-Z-gcd-p-q-1-q-gt-0-0-x-R-Q-1-Show-that-f-x-is-continuous-function-when-x-R-Q-2-Show-that-f-x-is-not-a-continuous-function-when-x-Q-3-Prove

Question Number 227438 by Lara2440 last updated on 29/Jan/26 $$\mathrm{Let}\:{f}\left({x}\right)=\begin{cases}{\frac{\mathrm{1}}{{q}}\:\:\:\:\:{x}=\frac{{p}}{{q}}\:,\:{p},{q}\in\mathbb{Z}\:,\:\mathrm{gcd}\left({p},{q}\right)=\mathrm{1}\:,\:{q}>\mathrm{0}}\\{\mathrm{0}\:\:\:\:{x}\in\mathbb{R}\backslash\mathbb{Q}}\end{cases} \\ $$$$\: \\ $$$$\mathrm{1}.\:\mathrm{Show}\:\mathrm{that}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{when}\:{x}\in\mathbb{R}\backslash\mathbb{Q} \\ $$$$\mathrm{2}.\:\mathrm{Show}\:\mathrm{that}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{when}\:{x}\in\mathbb{Q} \\ $$$$\mathrm{3}.\:\mathrm{Prove}\:\mathrm{function}\:\mathrm{g}\left({x}\right)\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist} \\ $$$$\mathrm{when}\:\mathrm{g}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{that}\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{only}\:\mathrm{in}\:{x}\in\mathbb{Q} \\ $$$$\mathrm{4}.\:\int_{\:\mathbb{R}} \:{f}\left({x}\right)\mathrm{d}{x} \\ $$…