Menu Close

Category: None

Question-195411

Question Number 195411 by sonukgindia last updated on 02/Aug/23 Answered by MM42 last updated on 02/Aug/23 $${lim}_{{x}\rightarrow\infty} \:\frac{\mathrm{2}×\mathrm{2}^{{x}} −\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{9}^{{x}} +\mathrm{4}^{{x}} }{\mathrm{8}×\mathrm{4}^{{x}} +\mathrm{3}^{{x}} −\frac{\mathrm{1}}{\mathrm{4}}×\mathrm{4}^{{x}} } \\…

Question-195433

Question Number 195433 by sonukgindia last updated on 02/Aug/23 Answered by gatocomcirrose last updated on 02/Aug/23 $$\mathrm{2}\begin{vmatrix}{\mathrm{2}}&{−\mathrm{2}}&{\mathrm{1}}\\{\mathrm{x}}&{\mathrm{2}}&{−\mathrm{1}}\\{\mathrm{1}}&{−\mathrm{1}}&{−\mathrm{2}}\end{vmatrix}−\mathrm{3}\begin{vmatrix}{\mathrm{x}}&{−\mathrm{2}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{2}}&{−\mathrm{1}}\\{\mathrm{x}}&{−\mathrm{1}}&{−\mathrm{2}}\end{vmatrix}+ \\ $$$$+\mathrm{i}\begin{vmatrix}{\mathrm{x}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{x}}&{−\mathrm{1}}\\{\mathrm{x}}&{\mathrm{1}}&{−\mathrm{2}}\end{vmatrix}+\begin{vmatrix}{\mathrm{x}}&{\mathrm{2}}&{−\mathrm{2}}\\{\mathrm{2}}&{\mathrm{x}}&{\mathrm{2}}\\{\mathrm{x}}&{\mathrm{1}}&{−\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\left[−\mathrm{10}−\mathrm{5x}\right]−\mathrm{3}\left[−\mathrm{5x}−\mathrm{10}\right]+\mathrm{i}\left[−\mathrm{3x}^{\mathrm{2}} −\mathrm{x}+\mathrm{10}\right]+\left[\mathrm{x}^{\mathrm{2}} +\mathrm{2x}\right]=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}}…

1-Prove-that-n-N-4-n-n-3-lt-n-1-3n-2-Solve-the-equations-in-Z-2-a-2x-3-xy-7-0-b-x-x-1-x-7-x-8-y-2-

Question Number 195342 by Matica last updated on 31/Jul/23 $$\:\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that}\:\:\forall{n}\:\in\:\mathbb{N}^{\ast} \:,\:\mathrm{4}^{{n}} \left({n}!\right)^{\mathrm{3}} \:<\:\left({n}+\mathrm{1}\right)^{\mathrm{3}{n}} \:. \\ $$$$\mathrm{2}.\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{in}\:\mathbb{Z}^{\mathrm{2}} \:: \\ $$$$\:\:\:\:\:{a}./\:\:\mathrm{2}{x}^{\mathrm{3}} +{xy}−\mathrm{7}=\mathrm{0}\:, \\ $$$$\:\:\:\:\:{b}./\:\:{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{7}\right)\left({x}+\mathrm{8}\right)={y}^{\mathrm{2}} . \\ $$…

show-that-for-any-natural-number-n-the-natural-number-3-5-n-3-5-n-is-divisible-by-2-n-

Question Number 195364 by Rodier97 last updated on 01/Aug/23 $$ \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{for}\:\mathrm{any}\:\mathrm{natural}\:\mathrm{number}\:{n},\: \\ $$$$\mathrm{the}\:\mathrm{natural}\:\mathrm{number}\:\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)^{{n}} +\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{{n}} \:\mathrm{is}\:\mathrm{divisible} \\ $$$$\mathrm{by}\:\mathrm{2}^{{n}} . \\ $$ Answered by Frix last…

A-professor-said-0-0-because-0-0-a-0-a-N-Can-you-prove-

Question Number 195290 by Matica last updated on 29/Jul/23 $$\:{A}\:{professor}\:{said}\:\:\mathrm{0}\mid\mathrm{0}\:{because}\:\mathrm{0}=\:\mathrm{0}×{a}+\mathrm{0}\:\:\:,\:{a}\in\:\mathbb{N}.\:{Can}\:{you}\:{prove}? \\ $$ Answered by Frix last updated on 29/Jul/23 $${a}\mid{b}\:\Leftrightarrow\:\frac{{b}}{{a}}\in\mathbb{Z}\:\mathrm{but}\:\frac{\mathrm{0}}{\mathrm{0}}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\Rightarrow\:\mathrm{0}\mid\mathrm{0}\:\mathrm{is}\:\mathrm{meaningless} \\ $$ Terms of Service…