Menu Close

Category: None

Question-194812

Question Number 194812 by sonukgindia last updated on 16/Jul/23 Answered by MM42 last updated on 16/Jul/23 $${A}={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\mathrm{1}−{x}}−\left(\mathrm{1}+{x}\right)}{\:\frac{{sinx}−{x}}{{x}}} \\ $$$${A}={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\left(\mathrm{1}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)}{\:\left(\mathrm{1}−{x}\right)\left({sinx}−{x}\right)} \\…

Question-194836

Question Number 194836 by sonukgindia last updated on 16/Jul/23 Commented by Frix last updated on 16/Jul/23 $$\mathrm{No}\:\mathrm{exact}\:\mathrm{solution}\:\mathrm{possible}. \\ $$$$\mathrm{I}\:\mathrm{get}\:{z}\approx.\mathrm{624520211}−.\mathrm{163489336} \\ $$ Terms of Service Privacy…

Question-194818

Question Number 194818 by sonukgindia last updated on 16/Jul/23 Answered by sniper237 last updated on 16/Jul/23 $$\overset{{x}={u}^{\mathrm{2}} } {=}\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}−{u}}\:×\left(\mathrm{2}{lnu}\right)×\left(\mathrm{2}{udu}\right) \\ $$$$=\:\mathrm{4}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{u}^{\mathrm{2}−\mathrm{1}}…

Question-194790

Question Number 194790 by BagusSetyoWibowo last updated on 15/Jul/23 Answered by Frix last updated on 15/Jul/23 $$\mathrm{Where}'\mathrm{s}\:\mathrm{the}\:\mathrm{problem}? \\ $$$${ab}^{{x}+{c}} ={d}\:\Rightarrow\:{x}=\frac{\mathrm{ln}\:\frac{{d}}{{a}}}{\mathrm{ln}\:{b}}−{c} \\ $$$${x}=\frac{\mathrm{ln}\:\frac{\mathrm{cos}\:\mathrm{54}\:\left(\mathrm{log}_{\mathrm{5}} \:\mathrm{60}\:+\frac{\tau}{\mathrm{60}}+\mathrm{sin}\:\left(\mathrm{8}+\mathrm{cot}\:\mathrm{67}\right)\:+\mathrm{4}^{\mathrm{2}} \right)}{\mathrm{2}}}{\mathrm{ln}\:\mathrm{50}}−\pi \\…

Question-194735

Question Number 194735 by sonukgindia last updated on 14/Jul/23 Answered by TheHoneyCat last updated on 14/Jul/23 $$\mathrm{If}\:{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant},\:\left({i}.{e}.\:{x}\left(\mathrm{2}\right)={x}×\mathrm{2}\:\right) \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{is}: \\ $$$${x}\left(\mathrm{2}\right)=\frac{\mathrm{4}\sqrt{\mathrm{7}}−\mathrm{2}\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{7}}+\sqrt{\mathrm{5}}} \\ $$$$ \\ $$$$\mathrm{But}\:\mathrm{I}'\mathrm{m}\:\mathrm{guessing}\:{x}\:\mathrm{is}\:\mathrm{here}\:\mathrm{a}\:\mathrm{function}……