Menu Close

Category: None

evaluate-C-3y-2-2z-2-dx-6x-10z-y-dy-4xz-5y-2-dz-along-the-portion-from-1-0-1-to-3-4-5-of-the-curve-C-which-is-the-intersection-of-the-two-surfaces-z-2-x-2-y-2-and-z-y-1-

Question Number 224915 by fantastic last updated on 11/Oct/25 $${evaluate}\: \\ $$$$\int_{{C}} \left(\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{z}^{\mathrm{2}} \right){dx}+\left(\mathrm{6}{x}−\mathrm{10}{z}\right){y}\:{dy}\:+\left(\mathrm{4}{xz}−\mathrm{5}{y}^{\mathrm{2}} \right){dz} \\ $$$${along}\:{the}\:{portion}\:{from}\:\left(\mathrm{1},\mathrm{0},\mathrm{1}\right)\:{to}\:\left(\mathrm{3},\mathrm{4},\mathrm{5}\right)\:{of} \\ $$$${the}\:{curve}\:{C}, \\ $$$${which}\:{is}\:{the}\:{intersection}\:{of}\:{the} \\ $$$${two}\:{surfaces}\:{z}^{\mathrm{2}} ={x}^{\mathrm{2}}…

prove-lim-n-1-ln-p-n-k-1-1-1-p-k-e-0-0-0-57721566490153286060-

Question Number 224879 by fkwow344 last updated on 09/Oct/25 $$\mathrm{prove} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{ln}\left({p}_{{n}} \right)}\:\underset{{k}} {\prod}\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{p}_{{k}} }}={e}^{\Upsilon_{\mathrm{0}} } \:,\: \\ $$$$\Upsilon_{\mathrm{0}} =\mathrm{0}.\mathrm{57721566490153286060}.. \\ $$ Answered by…

vol-g-V-det-g-dx-1-dx-2-dx-3-parametric-Surface-S-u-v-w-R-3-R-3-S-r-rsin-cos-rsin-sin-rcos-find-metric-tensor-g-g-11-

Question Number 224883 by fkwow344 last updated on 09/Oct/25 $$\int\:\mathrm{vol}\left({g}^{\:} \right)=\int_{\:{V}} \:\sqrt{\mathrm{det}\:\boldsymbol{\mathrm{g}}_{\mu\nu} }\:\mathrm{d}{x}^{\mathrm{1}} \wedge\mathrm{d}{x}^{\mathrm{2}} \wedge\mathrm{d}{x}^{\mathrm{3}} \\ $$$$\mathrm{parametric}\:\mathrm{Surface}\: \\ $$$$\overset{\rightarrow} {\mathcal{S}}\left({u},{v},{w}\right);\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}^{\mathrm{3}} \\ $$$$\overset{\rightarrow} {\mathcal{S}}\left({r},\theta,\rho\right)\begin{cases}{{r}\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\rho\right)}\\{{r}\mathrm{sin}\left(\theta\right)\mathrm{sin}\left(\rho\right)}\\{{r}\mathrm{cos}\left(\theta\right)}\end{cases}\: \\…

A-homogeneous-rod-AB-of-length-L-1-8m-and-mass-M-is-pivoted-at-the-centre-O-in-such-a-way-that-it-can-rotate-freely-in-the-vertical-plane-The-rod-is-initially-in-the-horizontal-position-An-insect-S-

Question Number 224859 by fantastic last updated on 08/Oct/25 $${A}\:{homogeneous}\:{rod}\:{AB}\:{of}\:{length} \\ $$$${L}=\mathrm{1}.\mathrm{8}{m}\:{and}\:{mass}\:{M}\:{is}\:{pivoted} \\ $$$${at}\:{the}\:{centre}\:{O}\:{in}\:{such}\:{a}\:{way}\:{that} \\ $$$${it}\:{can}\:{rotate}\:{freely}\:{in}\:{the}\:{vertical}\:{plane}. \\ $$$$ \\ $$$${The}\:{rod}\:{is}\:{initially}\:{in}\:{the}\:{horizontal} \\ $$$${position}.{An}\:{insect}\:{S}\:\:{of}\:{the}\: \\ $$$${same}\:{mass}\:{M}\:{falls}\:{vertically} \\…

can-you-guys-explan-why-metric-tensor-g-0-Riemann-metric-tensor-R-0-

Question Number 224866 by fkwow344 last updated on 08/Oct/25 $$\mathrm{can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{explan}\:\mathrm{why} \\ $$$$\mathrm{metric}\:\mathrm{tensor}\:\mathrm{g}_{\mu\nu} =\mathrm{0}\:\:\rightarrow\:\mathrm{Riemann}\:\mathrm{metric}\:\mathrm{tensor}\:{R}_{\alpha\gamma\beta} ^{\delta} =\mathrm{0} \\ $$ Answered by MrAjder last updated on 18/Oct/25 Terms…

lim-n-1-1-2-1-3-1-4-1-n-ln-n-

Question Number 224852 by fantastic last updated on 07/Oct/25 $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{{n}}}{{ln}\left({n}\right)}=? \\ $$ Answered by vnm last updated on 08/Oct/25 $$\mathrm{lim}=\mathrm{1} \\ $$$$\mathrm{This}\:\mathrm{follows}\:\mathrm{from}\:\mathrm{the}\:\mathrm{double}\:\mathrm{inequality}\: \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{evident}\:\mathrm{if}\:\mathrm{we}\:\mathrm{plot}\:…

a-piece-of-chalk-rests-on-a-horizontal-board-with-0-1-Suddenly-the-board-starts-to-move-horizontally-at-a-speed-of-2m-per-second-and-after-a-time-it-stops-abruptly-find-the-length-of-the-line-d

Question Number 224853 by fantastic last updated on 07/Oct/25 $$ \\ $$$$\mathrm{a}\:\mathrm{piece}\:\mathrm{of}\:\mathrm{chalk}\:\mathrm{rests}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{horizontal}\:\mathrm{board}\:\mathrm{with}\:\mu=\mathrm{0}.\mathrm{1} \\ $$$$\mathrm{Suddenly}\:\mathrm{the}\:\mathrm{board}\:\mathrm{starts}\:\mathrm{to} \\ $$$$\mathrm{move}\:\mathrm{horizontally}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of} \\ $$$$\mathrm{2m}\:\mathrm{per}\:\mathrm{second}\:\mathrm{and}\:\mathrm{after}\:\mathrm{a} \\ $$$$\mathrm{time}\:\tau\:\mathrm{it}\:\mathrm{stops}\:\mathrm{abruptly}.\:\mathrm{find}\: \\ $$$$\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{drawn} \\…