Menu Close

Category: None

0-1-1-x-1-x-3-dx-15-8-

Question Number 57140 by mustakim420 last updated on 30/Mar/19 $$\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\sqrt{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}\:{dx}\:\leqslant\:\frac{\mathrm{15}}{\mathrm{8}} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 30/Mar/19 $$\frac{\mathrm{1}+{x}}{\mathrm{2}}\geqslant\sqrt{{x}}\: \\ $$$$\frac{\mathrm{1}+{x}^{\mathrm{3}}…

The-value-of-the-integral-0-pi-1-a-2-2a-cos-x-1-dx-a-gt-1-is-

Question Number 57138 by mustakim420 last updated on 30/Mar/19 $$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:\:\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{2}{a}\:\mathrm{cos}\:{x}+\mathrm{1}}\:{dx}\:\:\left({a}\:>\mathrm{1}\right)\:\:\mathrm{is} \\ $$ Commented by maxmathsup by imad last updated on…

a-b-f-x-f-x-f-a-b-x-dx-

Question Number 57136 by mustakim420 last updated on 30/Mar/19 $$\underset{{a}} {\overset{{b}} {\int}}\:\:\frac{{f}\left({x}\right)}{{f}\left({x}\right)+{f}\left({a}+{b}−{x}\right)}\:{dx}\:= \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 30/Mar/19 $${I}=\int_{{a}} ^{{b}} \frac{{f}\left({x}\right)}{{f}\left({x}\right)+{f}\left({a}+{b}−{x}\right)}{dx} \\…

The-sum-of-first-10-terms-of-the-series-x-1-x-2-x-2-1-x-2-2-x-3-1-x-3-2-is-

Question Number 56424 by gunawan last updated on 16/Mar/19 $$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{first}\:\mathrm{10}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series} \\ $$$$\left({x}+\:\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \:+\:\left({x}^{\mathrm{2}} +\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} \:+\:\left({x}^{\mathrm{3}} +\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\mathrm{2}} +…\:\mathrm{is} \\ $$ Answered by mr W…

The-sum-to-infinity-of-the-series-1-3-1-15-1-35-is-1-2-

Question Number 56423 by gunawan last updated on 16/Mar/19 $$\mathrm{The}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{infinity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{15}}\:+\:\frac{\mathrm{1}}{\mathrm{35}}\:+\:….\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}}. \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 16/Mar/19 $${T}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{3}−\mathrm{1}}{\mathrm{3}×\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${T}_{\mathrm{2}}…

If-the-system-of-equations-ax-by-a-b-z-0-bx-cy-b-c-z-0-a-b-x-b-c-y-0-has-a-non-trivial-solution-then-

Question Number 56422 by gunawan last updated on 16/Mar/19 $$\mathrm{If}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations} \\ $$$${ax}\:+\:{by}\:+\:\left({a}\lambda+{b}\right){z}\:=\:\mathrm{0} \\ $$$${bx}\:+\:{cy}\:+\:\left({b}\lambda+{c}\right){z}\:=\:\mathrm{0} \\ $$$$\left({a}\lambda\:+\:{b}\right){x}\:+\:\left({b}\lambda+{c}\right){y}\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{non}−\mathrm{trivial}\:\mathrm{solution},\:\mathrm{then} \\ $$ Answered by MJS last updated…

Let-a-1-a-2-a-10-be-in-AP-and-h-1-h-2-h-10-be-in-HP-If-a-1-h-1-2-and-a-10-h-10-3-then-a-4-h-7-is-

Question Number 56421 by gunawan last updated on 16/Mar/19 $$\mathrm{Let}\:{a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} \:,\:…,\:{a}_{\mathrm{10}} \:\mathrm{be}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{and}\:{h}_{\mathrm{1}} ,\:{h}_{\mathrm{2}} ,…,\:{h}_{\mathrm{10}} \\ $$$$\mathrm{be}\:\mathrm{in}\:\mathrm{HP}.\:\mathrm{If}\:\:{a}_{\mathrm{1}} =\:{h}_{\mathrm{1}} =\mathrm{2}\:\:\mathrm{and}\:\:{a}_{\mathrm{10}} =\:{h}_{\mathrm{10}} =\mathrm{3}, \\ $$$$\mathrm{then}\:{a}_{\mathrm{4}} {h}_{\mathrm{7}} \:\:\mathrm{is}…

Let-a-b-c-be-in-AP-and-a-lt-1-b-lt-1-c-lt-1-If-x-1-a-a-2-to-y-1-b-b-2-to-z-1-c-c-2-to-then-x-y-z-are-in-

Question Number 56419 by gunawan last updated on 16/Mar/19 $$\mathrm{Let}\:{a},\:{b},\:{c}\:\mathrm{be}\:\mathrm{in}\:\mathrm{AP}\:\mathrm{and}\:\mid{a}\mid<\mathrm{1},\:\mid{b}\mid<\mathrm{1},\:\mid{c}\mid<\mathrm{1}.\:\mathrm{If} \\ $$$${x}\:\:=\:\:\mathrm{1}+{a}+{a}^{\mathrm{2}} +…\:\mathrm{to}\:\infty\: \\ $$$${y}\:\:=\:\:\mathrm{1}+{b}+{b}^{\mathrm{2}} +…\:\mathrm{to}\:\infty\: \\ $$$${z}\:\:=\:\:\mathrm{1}+{c}+{c}^{\mathrm{2}} +…\:\mathrm{to}\:\infty\:\: \\ $$$$\mathrm{then}\:{x},\:{y},\:{z}\:\mathrm{are}\:\mathrm{in} \\ $$ Answered by…