Question Number 212886 by MrGaster last updated on 26/Oct/24 $$\int\frac{\mathrm{sin10}{x}}{\mathrm{sin}\:{x}}{dx}. \\ $$ Answered by Ghisom last updated on 26/Oct/24 $$\int\frac{\mathrm{sin}\:\mathrm{10}{x}}{\mathrm{sin}\:{x}}{dx}= \\ $$$$=\mathrm{4}\int\mathrm{cos}\:{x}\:\left(\mathrm{cos}\:\mathrm{8}{x}\:+\mathrm{cos}\:\mathrm{4}{x}\:+\frac{\mathrm{1}}{\mathrm{2}}\right){dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\right] \\…
Question Number 212887 by arianebulao last updated on 26/Oct/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212906 by issac last updated on 26/Oct/24 $$\mathrm{Pls}\:\mathrm{i}\:\mathrm{need}\:\mathrm{a}\:\mathrm{help}.. \\ $$$$\mathrm{from}\:\mathrm{Ordinary}\:\mathrm{differantial}\:\mathrm{Equation} \\ $$$${t}^{\mathrm{2}} {y}^{\left(\mathrm{2}\right)} \left({t}\right)+{t}\centerdot{y}^{\left(\mathrm{1}\right)} \left({t}\right)+\left({t}^{\mathrm{2}} −\nu^{\mathrm{2}} \right){y}\left({t}\right)=\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{Already}\:\mathrm{Know} \\ $$$$\mathrm{Solution}\:{y}\left({t}\right)={C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}}…
Question Number 212896 by MrGaster last updated on 26/Oct/24 $$\int\frac{{dx}}{{x}^{\mathrm{5}} −\mathrm{1}} \\ $$ Commented by Frix last updated on 26/Oct/24 $${x}^{\mathrm{5}} −\mathrm{1}=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}{x}+\mathrm{1}\right) \\…
Question Number 212798 by MrGaster last updated on 24/Oct/24 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{\frac{{x}^{\mathrm{2}} }{{e}^{{x}} }} =? \\ $$ Answered by mehdee7396 last updated on 24/Oct/24 $${lim}_{{x}\rightarrow\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)=\mathrm{1}\:\:\:\:\&\:\:\:\:{lim}_{{x}\rightarrow\infty}…
Question Number 212788 by MrGaster last updated on 24/Oct/24 $$ \\ $$$${Let}\:{f}\left({x}\right)\:\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{secondorder}\:\mathrm{continuoust} \\ $$$$\mathrm{derivaive},{t}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} },{g}\left({x},{y}\right)={f}\left(\frac{\mathrm{1}}{{r}}\right),\mathrm{ask}\:\frac{\partial^{\mathrm{2}} {g}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {g}}{\partial{y}^{\mathrm{2}} }. \\ $$ Terms of Service…
Question Number 212816 by Akayx last updated on 24/Oct/24 Answered by mahdipoor last updated on 24/Oct/24 $${f}\left({t}\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{2}\left({t}−\mathrm{4}{k}\right)\left({u}_{\mathrm{4}{k}} −{u}_{\mathrm{4}{k}+\mathrm{2}} \right)= \\ $$$$\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\left({t}−\mathrm{4}{k}\right){u}_{\mathrm{4}{k}}…
Question Number 212809 by MrGaster last updated on 24/Oct/24 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{certificate}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{csc}\frac{{x}}{\mathrm{2}^{{k}} }=\mathrm{cot}\frac{{x}}{\mathrm{2}^{{n}+\mathrm{1}} }−\mathrm{cot}\:{x} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 212765 by issac last updated on 23/Oct/24 $$\mathrm{i}\:\:\mathrm{generalized}\:\boldsymbol{\mathrm{Bessel}}\:\boldsymbol{\mathrm{function}}'\mathrm{s} \\ $$$$\mathrm{Laplace}\:\mathrm{Transform} \\ $$$$\mathrm{L}.\mathrm{T}{J}_{\nu} \left({z}\right)=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\:,\:{s}\in\left[\mathrm{0},\infty\right)\:,\:\nu\in\mathbb{R} \\ $$$$\mathrm{L}.\mathrm{T}\:{Y}_{\nu} \left({z}\right)=\frac{\mathrm{cot}\left(\pi\nu\right)\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}−\frac{\mathrm{csc}\left(\pi\nu\right)\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{\nu}…
Question Number 212779 by issac last updated on 23/Oct/24 $$\mathrm{excuse}\:\mathrm{me}???? \\ $$$$\mathrm{am}\:\mathrm{i}\:\mathrm{invisible}??\: \\ $$$$\mathrm{why}\:\mathrm{isn}'\mathrm{t}\:\mathrm{anyone}\:\mathrm{answering}\:\mathrm{my}\:\mathrm{qusestion} \\ $$$$ \\ $$ Commented by mr W last updated on…