Menu Close

Category: None

The-product-of-all-the-solutions-of-the-equation-x-2-2-3-x-2-2-0-is-

Question Number 115695 by ZiYangLee last updated on 27/Sep/20 $$\mathrm{The}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\:\mid\left({x}−\mathrm{2}\right)^{\mathrm{2}} \mid−\mathrm{3}\mid{x}−\mathrm{2}\mid+\mathrm{2}=\mathrm{0}\:\:\mathrm{is} \\ $$ Answered by MJS_new last updated on 27/Sep/20 $${x}=\mathrm{0}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\mathrm{0} \\ $$…

If-are-the-smallest-positive-angles-in-ascending-order-of-magnitude-which-have-their-sines-equal-to-the-positive-quantity-k-then-the-value-of-4-sin-2-3-sin-2-2-sin-2-sin-

Question Number 115685 by ZiYangLee last updated on 27/Sep/20 $$\mathrm{If}\:\:\alpha,\:\beta,\:\gamma,\:\delta\:\:\mathrm{are}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{positive}\: \\ $$$$\mathrm{angles}\:\mathrm{in}\:\mathrm{ascending}\:\mathrm{order}\:\mathrm{of} \\ $$$$\mathrm{magnitude}\:\mathrm{which}\:\mathrm{have}\:\mathrm{their}\:\mathrm{sines}\: \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{quantity}\:{k},\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{4}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}+\mathrm{3}\:\mathrm{sin}\:\frac{\beta}{\mathrm{2}}+\mathrm{2}\:\mathrm{sin}\:\frac{\gamma}{\mathrm{2}}+\mathrm{sin}\:\frac{\delta}{\mathrm{2}}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$ Answered…

Let-f-be-a-positive-function-Let-I-1-1-k-k-x-f-x-1-x-dx-I-2-1-k-k-x-f-x-1-x-dx-where-2k-1-gt-0-Then-I-1-I-2-is-

Question Number 50132 by CIRCLE001 last updated on 14/Dec/18 $$\mathrm{Let}\:{f}\:\:\mathrm{be}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{function}.\:\mathrm{Let} \\ $$$${I}_{\mathrm{1}} =\underset{\mathrm{1}−{k}} {\overset{{k}} {\int}}{x}\:{f}\left\{{x}\left(\mathrm{1}−{x}\right\}\:{dx},\:\right. \\ $$$${I}_{\mathrm{2}} =\underset{\mathrm{1}−{k}} {\overset{{k}} {\int}}{x}\:{f}\left\{{x}\left(\mathrm{1}−{x}\right\}\:{dx},\:\right. \\ $$$$\mathrm{where}\:\mathrm{2}{k}−\mathrm{1}>\mathrm{0}.\:\mathrm{Then}\:\frac{{I}_{\mathrm{1}} }{{I}_{\mathrm{2}} }\:\:\mathrm{is} \\…

0-1-1-x-4-dx-

Question Number 115404 by EvoneAkashi last updated on 25/Sep/20 $$\:\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:= \\ $$ Answered by mathmax by abdo last updated on 25/Sep/20 $$\mathrm{let}\:\mathrm{I}\:=\int_{\mathrm{0}}…

The-coefficient-of-the-term-independent-of-x-in-the-expansion-of-x-1-x-2-3-x-1-3-1-x-1-x-x-1-2-10-is-

Question Number 115399 by EvoneAkashi last updated on 25/Sep/20 $$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{the}\:\mathrm{term}\:\mathrm{independent} \\ $$$$\mathrm{of}\:{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left(\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}/\mathrm{3}} −\:{x}^{\mathrm{1}/\mathrm{3}} +\:\mathrm{1}}\:−\:\frac{{x}−\mathrm{1}}{{x}−{x}^{\mathrm{1}/\mathrm{2}} }\right)^{\mathrm{10}} \:\:\mathrm{is} \\ $$ Answered by Dwaipayan Shikari last…

The-value-of-tan-1-1-2-tan-1-1-3-is-

Question Number 49751 by Pk1167156@gmail.com last updated on 10/Dec/18 $$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}}\:\:\mathrm{is} \\ $$ Commented by maxmathsup by imad last updated on 10/Dec/18 $${we}\:{have}\:{tan}\left({arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right)= \\…

The-vectors-a-xi-x-1-j-x-2-k-b-x-3-i-x-4-j-x-5-k-and-c-x-6-i-x-7-j-x-8-k-are-coplanar-for-

Question Number 49692 by Micky24 last updated on 09/Dec/18 $$\mathrm{The}\:\mathrm{vectors}\:\boldsymbol{\mathrm{a}}={x}\boldsymbol{\mathrm{i}}+\left({x}+\mathrm{1}\right)\boldsymbol{\mathrm{j}}+\left({x}+\mathrm{2}\right)\boldsymbol{\mathrm{k}}, \\ $$$$\boldsymbol{\mathrm{b}}=\left({x}+\mathrm{3}\right)\boldsymbol{\mathrm{i}}+\left({x}+\mathrm{4}\right)\boldsymbol{\mathrm{j}}+\left({x}+\mathrm{5}\right)\boldsymbol{\mathrm{k}}\:\:\:\mathrm{and} \\ $$$$\boldsymbol{\mathrm{c}}=\left({x}+\mathrm{6}\right)\boldsymbol{\mathrm{i}}+\left({x}+\mathrm{7}\right)\boldsymbol{\mathrm{j}}+\left({x}+\mathrm{8}\right)\boldsymbol{\mathrm{k}}\:\mathrm{are}\:\mathrm{coplanar} \\ $$$$\mathrm{for} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 09/Dec/18…

If-9-x-12-147-then-the-value-of-x-is-

Question Number 49464 by Pk1167156@gmail.com last updated on 07/Dec/18 $$\mathrm{If}\:\:\mathrm{9}\sqrt{{x}}=\sqrt{\mathrm{12}}+\sqrt{\mathrm{147}},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:{x}\:\mathrm{is} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 07/Dec/18 $${pls}\:{activate}\:{your}\:{mind}\:{by}\:{trying}\:{to}\:{solve}\:{problems} \\ $$$${by}\:{yourself}…{later}\:{post}\:{in}\:{forum}\:{if}\:{results}\:{not} \\…