Question Number 27524 by julli deswal last updated on 08/Jan/18 $$\mathrm{If}\:{x}\:\mathrm{is}\:\mathrm{real},\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{17}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{7}}\:\:\mathrm{is} \\ $$ Answered by prakash jain last updated on 08/Jan/18…
Question Number 27397 by julli deswal last updated on 06/Jan/18 $$\mathrm{The}\:\mathrm{roots}\:\mathrm{of}\:{x}^{\mathrm{2}} −\left({a}+\mathrm{1}\right){x}+{b}^{\mathrm{2}} =\mathrm{0}\:\mathrm{are} \\ $$$$\mathrm{equal}.\:\mathrm{Then}\:\mathrm{which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\:{a}\:\:\mathrm{and}\:\:{b}\:\:. \\ $$ Answered by jota@ last updated on…
Question Number 27296 by julli deswal last updated on 04/Jan/18 $$\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{3}{A}}{\mathrm{sin}^{\mathrm{2}} {A}}\:−\:\frac{\mathrm{cos}^{\mathrm{2}} \mathrm{3}{A}}{\mathrm{cos}^{\mathrm{2}} {A}}\:=\: \\ $$ Commented by abdo imad last updated on 04/Jan/18…
Question Number 27295 by iy last updated on 04/Jan/18 $$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\underset{\:\mathrm{0}} {\overset{\pi} {\int}}\:\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{2}{a}\:\mathrm{cos}\:{x}+\mathrm{1}}\:{dx}\:\:\left({a}<\:\mathrm{1}\right)\:\mathrm{is} \\ $$ Commented by abdo imad last updated on 04/Jan/18…
Question Number 27294 by iy last updated on 04/Jan/18 $$\underset{\mathrm{1}/{e}} {\overset{\mathrm{tan}\:{x}} {\int}}\frac{{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:+\:\underset{\mathrm{1}/{e}} {\overset{\mathrm{cot}\:{x}} {\int}}\:\frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:{dt}\:= \\ $$ Commented by prakash jain last updated on…
Question Number 27281 by kemhoney78@gmail.com last updated on 04/Jan/18 $$\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\:\left({x}^{\mathrm{2}} +\mathrm{cos}\:{x}\right)\:\mathrm{log}\:\left(\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}\right){dx}\:=\:\mathrm{0} \\ $$ Commented by abdo imad last updated on 04/Jan/18 $${let}\:{put}\:\:{f}\left({x}\right)=\:\left({x}^{\mathrm{2}} +{cosx}\right){ln}\left(\frac{\mathrm{2}+{x}}{\left.\mathrm{2}−{x}\right)}\right)\:{we}\:{have}…
Question Number 27280 by kemhoney78@gmail.com last updated on 04/Jan/18 $$\mathrm{If}\:\mathrm{for}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}\:{y},\:\left[{y}\right]\:\mathrm{is}\:\mathrm{the}\:\mathrm{greatest} \\ $$$$\mathrm{integer}\:\mathrm{less}\:\mathrm{than}\:\mathrm{or}\:\mathrm{equal}\:\mathrm{to}\:{y},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integeral}\:\underset{\pi/\mathrm{2}} {\overset{\mathrm{3}\pi/\mathrm{2}} {\int}}\left[\mathrm{2}\:\mathrm{sin}\:{x}\right]{dx}\:\mathrm{is} \\ $$ Commented by abdo imad last updated on…
Question Number 27258 by hasie09 last updated on 04/Jan/18 $$\mathrm{If}\:\:\mathrm{9}^{{x}} −\mathrm{4}×\mathrm{3}^{{x}+\mathrm{2}} +\mathrm{3}^{\mathrm{5}} =\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{solution} \\ $$$$\mathrm{set}\:\mathrm{is} \\ $$ Commented by tawa tawa last updated on 04/Jan/18…
Question Number 27203 by julli deswal last updated on 03/Jan/18 $$\mathrm{Let}\:{S}\:\subset\:\left(\mathrm{0},\:\pi\right)\:\mathrm{denote}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{8}^{\mathrm{1}+\mid\mathrm{cos}\:{x}\mid+\mathrm{cos}^{\mathrm{2}} {x}+\mid\mathrm{cos}^{\mathrm{3}} {x}\mid+…\:\mathrm{to}\:\infty} =\:\mathrm{4}^{\mathrm{3}} \\ $$$$\mathrm{then}\:{S}\:=\: \\ $$ Answered by Tinkutara…
Question Number 92486 by Rohit@Thakur last updated on 07/May/20 $$\mathrm{The}\:\mathrm{smallest}\:\mathrm{interval}\:\left[{a},\:{b}\right]\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }}\:{dx}\:\in\:\left[{a},\:{b}\right]\:\:\mathrm{is}\:\mathrm{given}\:\mathrm{by} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com