Question Number 224043 by ghnaseri last updated on 15/Aug/25 $${f}\left({x}\right)=\left(\sqrt{{x}−\mathrm{5}}\right)^{\mathrm{0}} \\ $$$${Dom}_{{f}} =? \\ $$ Answered by Jyrgen last updated on 16/Aug/25 $$\mathrm{0}^{\mathrm{0}} \:{is}\:{not}\:{defined} \\…
Question Number 224033 by fantastic last updated on 15/Aug/25 $${HAPPY}\:{INDEPENDENCE} \\ $$$${DAY}! \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 223978 by fantastic last updated on 12/Aug/25 $${Guys}\:{my}\:{exams}\:{are}\:{starting} \\ $$$${from}\:{today}.{Wish}\:{me}\:{luck}! \\ $$ Commented by som(math1967) last updated on 12/Aug/25 $$\boldsymbol{{Best}}\:\boldsymbol{{of}}\:\:\boldsymbol{{luck}}\: \\ $$ Commented…
Question Number 223917 by tun26114 last updated on 09/Aug/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 223905 by TonyCWX last updated on 09/Aug/25 $${ABCD}\:{is}\:{a}\:{square} \\ $$$${EL}={LF} \\ $$$${FN}={ND} \\ $$$${O}\:{is}\:{the}\:{center}\:{of}\:{square} \\ $$$${Prove}\:{that}\:{points}\:{K},\:{L},\:{O},\:{N}\:{and}\:{C}\:{are}\:{concyclic} \\ $$ Commented by TonyCWX last updated…
Question Number 223881 by fantastic last updated on 08/Aug/25 Answered by som(math1967) last updated on 08/Aug/25 $${let}\:{CP}={x},\:{SP}={y} \\ $$$$\:\frac{\mathrm{15}{x}}{\mathrm{100}}=\frac{\mathrm{25}{y}}{\mathrm{100}} \\ $$$$\Rightarrow\:\frac{{x}}{{y}}=\frac{\mathrm{25}}{\mathrm{15}}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\:\therefore{CP}:{SP}=\mathrm{5}:\mathrm{3} \\ $$$$\:{loss\%}=\frac{\mathrm{2}}{\mathrm{5}}×\mathrm{100}=\mathrm{40\%}…
Question Number 223889 by fantastic last updated on 08/Aug/25 Commented by fantastic last updated on 08/Aug/25 $${please}\:{help}\:{me}\:{with}\:{explanation} \\ $$ Commented by mr W last updated…
Question Number 223821 by wewji12 last updated on 06/Aug/25 $$\underset{\nu\rightarrow\alpha} {\mathrm{lim}}\:\frac{{J}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)+{e}^{\boldsymbol{{i}}\pi\nu} \centerdot{Y}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)}{{Y}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)−{e}^{\boldsymbol{{i}}\pi\nu} \centerdot{J}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)}=?? \\ $$$$\alpha\in\mathbb{Z}\: \\ $$ Terms of Service Privacy…
Question Number 223839 by wewji12 last updated on 06/Aug/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\left[\mathrm{Struve}\boldsymbol{\mathrm{H}}_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\:^{\:^{\:} } } \left({z}\right)−\mathrm{Bessel}{Y}_{−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)\right]\:\mathrm{d}{z}=?? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 223801 by wewji12 last updated on 05/Aug/25 $$\mathrm{sorry}\:\:\mathrm{i}\:\mathrm{mean}\:{p}_{{h}} \in\mathbb{P}\:\left(\mathrm{prime}\:\mathrm{set}\right) \\ $$$$\underset{{h}\rightarrow\infty} {\mathrm{lim}}\:\frac{{p}_{{h}+\mathrm{1}} }{{p}_{{h}} }=?? \\ $$ Commented by Ghisom last updated on 05/Aug/25…