Question Number 64951 by naka3546 last updated on 23/Jul/19 Answered by mr W last updated on 23/Jul/19 Commented by mr W last updated on 23/Jul/19…
Question Number 130465 by naka3546 last updated on 25/Jan/21 $${Find}\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{4}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)\:+\:\mathrm{sec}\:\left(\frac{\pi}{\mathrm{14}}\right)}{\mathrm{cot}\:\left(\frac{\pi}{\mathrm{7}}\right)} \\ $$ Answered by Dwaipayan Shikari last updated on 26/Jan/21 $$\frac{\mathrm{4}{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right){cos}\left(\frac{\pi}{\mathrm{14}}\right){sin}\left(\frac{\pi}{\mathrm{7}}\right)+{sin}\left(\frac{\pi}{\mathrm{7}}\right)}{{cos}\frac{\pi}{\mathrm{7}}{cos}\frac{\pi}{\mathrm{14}}} \\ $$$$=\frac{\mathrm{2}{cos}\frac{\pi}{\mathrm{7}}{cos}\frac{\pi}{\mathrm{14}}−\mathrm{2}{cos}\frac{\mathrm{3}\pi}{\mathrm{7}}{cos}\frac{\pi}{\mathrm{14}}+{sin}\frac{\pi}{\mathrm{14}}}{{cos}\frac{\pi}{\mathrm{7}}{cos}\frac{\pi}{\mathrm{14}}}…
Question Number 130440 by mohammad17 last updated on 25/Jan/21 Commented by mohammad17 last updated on 25/Jan/21 $${help}\:{me} \\ $$ Answered by mathmax by abdo last…
Question Number 64903 by naka3546 last updated on 23/Jul/19 $$\mathrm{1},\:\mathrm{3},\:\mathrm{7},\:\mathrm{15},\:\mathrm{30},\:\mathrm{57},\:\mathrm{103},\:{x} \\ $$$${What}'{s}\:\:{x}\:? \\ $$ Commented by Tony Lin last updated on 23/Jul/19 $${f}\left(\mathrm{1}\right)=\mathrm{1},{f}\left(\mathrm{2}\right)=\mathrm{3},{f}\left(\mathrm{3}\right)=\mathrm{7},{f}\left(\mathrm{4}\right)=\mathrm{15} \\ $$$${f}\left(\mathrm{5}\right)=\mathrm{30},{f}\left(\mathrm{6}\right)=\mathrm{57},{f}\left(\mathrm{7}\right)=\mathrm{103},{f}\left(\mathrm{8}\right)={x}…
Question Number 130416 by mohammad17 last updated on 25/Jan/21 $${find}\:{singular}\:{point}\:{for}\:{each}\: \\ $$$$ \\ $$$$\left(\mathrm{1}\right){f}\left({z}\right)=\frac{{e}^{{z}} }{{z}^{\mathrm{2}} }\:\:\:\:\:\:\:,\:\:\:\:\left(\mathrm{2}\right){f}\left({z}\right)=\frac{{sinz}}{{z}}\:\:\:, \\ $$$$ \\ $$$$\left(\mathrm{3}\right){f}\left({z}\right)=\frac{\mathrm{1}−{cosz}}{{sinz}^{\mathrm{2}} }\:\:\:\:\:,\:\:\:\left(\mathrm{4}\right){f}\left({z}\right)={ln}\mid{z}\mid \\ $$$$ \\ $$$${how}\:{can}\:{solve}\:{this}\:{help}\:{me}\:{sir}…
Question Number 64851 by naka3546 last updated on 22/Jul/19 $${Find}\:\:{all}\:\:{solutions}\:\:{of}\:\:{x}\:\:{real}\:\:{numbers}\: \\ $$$$\:\:\:\:\:\:\:\:{f}\:^{−\mathrm{1}} \left({x}\right)\:\:=\:\:{f}\left({x}\right) \\ $$ Commented by naka3546 last updated on 22/Jul/19 $${how}\:\:{many}\:\:{function}\:\:{which}\:\:{satisfy}\:\:{that}\:\:{condition}\:. \\ $$…
Question Number 64797 by MJS last updated on 21/Jul/19 $$\mathrm{for}\:\mathrm{Tawa},\:\mathrm{an}\:\mathrm{old}\:\mathrm{problem}\:\mathrm{explained} \\ $$$$\left(\mathrm{1}\right)\:\:{x}+{y}+{z}=\alpha \\ $$$$\left(\mathrm{2}\right)\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\beta \\ $$$$\left(\mathrm{3}\right)\:\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\gamma \\ $$$$\alpha,\:\beta,\:\gamma\:\mathrm{are}\:\mathrm{given} \\…
Question Number 130324 by mohammad17 last updated on 24/Jan/21 $${prove}\:{that}\:{lim}_{{z}\rightarrow\mathrm{0}} \:\frac{{z}^{\mathrm{2}} }{\mid{z}\overset{\:\:\mathrm{2}} {\mid}}\:=−\mathrm{1}\:{since}\:{z}={x}+{iy} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130327 by n0y0n last updated on 24/Jan/21 $$\mathrm{proof}\:\mathrm{that}\:\mathrm{laplace}\:\mathrm{transform}\:\:\mathrm{is}\:\mathrm{an}\:\mathrm{one}\:\mathrm{to} \\ $$$$\mathrm{one}\:\mathrm{transform}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130322 by mr W last updated on 24/Jan/21 $${to}\:{TinkuTara} \\ $$$${dear}\:{sir}: \\ $$$${can}\:{you}\:{please}\:{check}\:{following}\:{issue}: \\ $$$${what}\:{could}\:{be}\:{the}\:{reason}\:{that}\:{i}\:{can}'{t} \\ $$$${access}\:{to}\:{my}\:{old}\:{bookmarked}\:{posts} \\ $$$${before}\:{a}\:{special}\:{date}? \\ $$ Commented by…