Menu Close

Category: None

Question-130317

Question Number 130317 by stelor last updated on 24/Jan/21 Answered by mathmax by abdo last updated on 24/Jan/21 $$\mathrm{I}=\int_{−\infty} ^{+\infty} \:\mathrm{x}\:\mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}} \mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\frac{\mathrm{x}}{\:\sqrt{\mathrm{2}}}=\mathrm{t}\:\Rightarrow \\ $$$$\mathrm{I}=\int_{−\infty}…

Question-130315

Question Number 130315 by stelor last updated on 24/Jan/21 Answered by Dwaipayan Shikari last updated on 24/Jan/21 $$\int_{−\infty} ^{\infty} {xe}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} {dx}\:\:\:\:\:\:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}={u}\Rightarrow{x}=\frac{{du}}{{dx}} \\ $$$$=\int_{−\infty}…

hello-please-give-me-the-limited-development-of-f-in-0-at-3-rd-order-f-x-ln-sin-x-

Question Number 130303 by stelor last updated on 24/Jan/21 $$\mathrm{hello}…\:\mathrm{please}\:\mathrm{give}\:\mathrm{me}\:\mathrm{the}\:\mathrm{limited}\:\mathrm{development}\:\mathrm{of}…{f}…\:{in}\:\mathrm{0}\:{at}\:\mathrm{3}^{{rd}} \:{order}. \\ $$$$\:\:\:\:{f}\left({x}\right)={ln}\left({sin}\left({x}\right)\right) \\ $$$$ \\ $$ Commented by stelor last updated on 24/Jan/21 $$\mathrm{developpement}\:\mathrm{limite}\:\mathrm{en}\:\frac{\Pi}{\mathrm{2}}\:\mathrm{a}\:\mathrm{l}'\mathrm{ordre}\:\mathrm{3}.…

x-x-4-1-dx-

Question Number 130287 by naka3546 last updated on 24/Jan/21 $$\int\:\frac{{x}}{{x}^{\mathrm{4}} +\mathrm{1}}\:{dx}\:\:=\:\:? \\ $$ Answered by mathmax by abdo last updated on 24/Jan/21 $$\mathrm{I}\:=\int\:\:\frac{\mathrm{xdx}}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{1}}\:\mathrm{let}\:\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{4}} \:+\mathrm{1}}\:\Rightarrow…

please-I-am-confiouse-1-and-2-1-x-dx-2-with-F-x-f-x-f-x-dx-

Question Number 130255 by stelor last updated on 23/Jan/21 $$\mathrm{please}\:\:….\:\mathrm{I}\:\mathrm{am}\:\mathrm{confiouse}….\:\:\:\mathrm{1}\:\mathrm{and}\:\mathrm{2}. \\ $$$$\mathrm{1}.\:\:\:\:\:\:\:\int\mid{x}\mid\mathrm{d}{x}\:=\:?\:? \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{with}\:\left(\mathrm{F}\left({x}\right)\right)^{'} \:=\mathrm{f}\left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\mid\mathrm{f}\left({x}\right)\mid{dx}\:=\:?? \\ $$$$ \\ $$ Answered by Olaf last updated on…

find-the-outliers-for-the-following-function-1-f-z-e-z-z-2-2-f-z-sinz-z-3-f-z-1-cosz-sinz-2-4-f-z-ln-z-

Question Number 130197 by mohammad17 last updated on 23/Jan/21 $${find}\:{the}\:{outliers}\:{for}\:{the}\:{following}\:{function} \\ $$$$ \\ $$$$\left(\mathrm{1}\right){f}\left({z}\right)=\frac{{e}^{{z}} }{{z}^{\mathrm{2}} }\:\:\:\:\:\:,\:\:\:\left(\mathrm{2}\right){f}\left({z}\right)=\frac{{sinz}}{{z}} \\ $$$$ \\ $$$$\left(\mathrm{3}\right){f}\left({z}\right)=\frac{\mathrm{1}−{cosz}}{{sinz}^{\mathrm{2}} }\:\:\:\:,\left(\mathrm{4}\right){f}\left({z}\right)={ln}\mid{z}\mid \\ $$$$ \\ $$$$…