Question Number 129616 by MathSh last updated on 16/Jan/21 $${tg}^{\mathrm{2}} \mathrm{10}+{tg}^{\mathrm{2}} \mathrm{50}+{tg}^{\mathrm{2}} \mathrm{70}=? \\ $$ Commented by liberty last updated on 17/Jan/21 $$\mathrm{ans}\::\:\mathrm{9}\: \\ $$…
Question Number 129621 by mohammad17 last updated on 16/Jan/21 $${by}\:{using}\:{macluren}\:{series}\:{prove}\:{cotx}=\frac{{cosx}}{{sinx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 129613 by mohammad17 last updated on 16/Jan/21 $${solve}:\frac{\left(\mathrm{2}+{i}\right)^{\mathrm{2020}} }{\left(\mathrm{2}−{i}\right)^{\mathrm{2019}} } \\ $$ Answered by Dwaipayan Shikari last updated on 16/Jan/21 $$\left(\mathrm{2}+{i}\right)=\sqrt{\mathrm{5}}\:{e}^{{itan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\:\left(\mathrm{2}−{i}\right)=\sqrt{\mathrm{5}}{e}^{−{itan}^{−\mathrm{1}}…
Question Number 129608 by mohammad17 last updated on 16/Jan/21 Commented by mohammad17 last updated on 18/Jan/21 $$?? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 129591 by mohammad17 last updated on 16/Jan/21 Answered by mr W last updated on 16/Jan/21 $${AC}=\left(\mathrm{2},\mathrm{4}\right) \\ $$$${BD}=\left(\mathrm{4},−\mathrm{2}\right) \\ $$$$\mathrm{cos}\:\theta=\frac{{AC}\centerdot{BD}}{\mid{AC}\mid×\mid{BD}\mid}=\frac{\mathrm{2}×\mathrm{4}−\mathrm{4}×\mathrm{2}}{\mathrm{2}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }=\frac{\mathrm{0}}{\mathrm{20}}=\mathrm{0} \\…
Question Number 129579 by help last updated on 16/Jan/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 129568 by abdurehime last updated on 16/Jan/21 Commented by greg_ed last updated on 16/Jan/21 $$\boldsymbol{\mathrm{please}},\:\boldsymbol{\mathrm{review}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{question}}\:\mathrm{2}\:! \\ $$$$\boldsymbol{\mathrm{it}}\:\boldsymbol{\mathrm{seems}}\:+\:\boldsymbol{\mathrm{or}}\:−\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{missed}}\:\boldsymbol{\mathrm{before}}\:\mathrm{14}\boldsymbol{{x}}. \\ $$ Commented by bemath last…
Question Number 129569 by zakirullah last updated on 16/Jan/21 $$\mathrm{Qi}.\:\mathrm{using}\:\mathrm{binomial}\:\mathrm{theorem},\:\mathrm{prove}\:\mathrm{that}\: \\ $$$$\left(\mathrm{3}^{\mathrm{2n}+\mathrm{2}\:} −\mathrm{8n}−\mathrm{9}\right)\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{64},\:\mathrm{where} \\ $$$$\:\mathrm{n}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{integer}. \\ $$$$\mathrm{Qii}.\:\:\mathrm{By}\:\mathrm{mathematical}\:\mathrm{induction};\: \\ $$$$\:\:\left(\mathrm{cos}\alpha+\left(\mathrm{n}−\mathrm{1}\right)\beta\right)\:=\:\mathrm{cos}\left(\alpha+\frac{\left(\mathrm{n}−\mathrm{1}\right)\beta}{\mathrm{2}}\right)×\frac{\mathrm{sin}\left(\mathrm{n}\beta/\mathrm{2}\right)}{\mathrm{sin}\left(\beta/\mathrm{2}\right)} \\ $$ Answered by Dwaipayan Shikari…
Question Number 129522 by help last updated on 16/Jan/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 129527 by MathSh last updated on 16/Jan/21 $${f}\left({x}\right)=\begin{cases}{\mathrm{5}−{x}\:;\:{x}\geqslant\mathrm{2}}\\{{x}^{\mathrm{2}} +\mathrm{3}\:;\:{x}<\mathrm{2}}\end{cases}\:\:\:{if}, \\ $$$${find}:\:{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{0}\right)=? \\ $$ Commented by bramlexs22 last updated on 16/Jan/21 $$=\:\mathrm{3}\:+\:\mathrm{3}\:=\:\mathrm{6} \\ $$…