Menu Close

Category: None

the-first-third-and-sixth-terms-of-a-linear-sequence-are-the-first-three-terms-of-an-exponential-sequence-find-the-common-ratio-

Question Number 192991 by otchereabdullai@gmail.com last updated on 01/Jun/23 $${the}\:{first},\:{third}\:{and}\:{sixth}\:{terms}\:{of}\:{a} \\ $$$${linear}\:{sequence}\:{are}\:{the}\:{first}\:{three}\: \\ $$$${terms}\:{of}\:{an}\:{exponential}\:{sequence}.\: \\ $$$${find}\:{the}\:{common}\:{ratio} \\ $$ Answered by MM42 last updated on 01/Jun/23…

find-the-equation-of-all-faces-of-pyramid-bounded-by-the-plan-Oxy-the-plan-Oyz-the-plan-passing-through-the-points-0-0-3-0-1-0-and-being-parallel-to-the-axis-Ox-the-plan-passing-through-the-po

Question Number 127453 by Eric002 last updated on 29/Dec/20 $${find}\:{the}\:{equation}\:{of}\:{all}\:{faces}\:{of}\:{pyramid} \\ $$$${bounded}\:{by}:\:{the}\:{plan}\:{Oxy};\:{the}\:{plan}\:{Oyz}; \\ $$$${the}\:{plan}\:{passing}\:{through}\:{the}\:{points} \\ $$$$\left(\mathrm{0};\mathrm{0};\mathrm{3}\right),\left(\mathrm{0};\mathrm{1};\mathrm{0}\right)\:{and}\:{being}\:{parallel}\:{to}\:{the} \\ $$$${axis}\:{Ox};\:{the}\:{plan}\:{passing}\:{through}\:{the} \\ $$$${point}\:\left(\mathrm{0};\mathrm{0};\mathrm{3}\right)\:{and}\:{the}\:{line}\:\frac{{x}−\mathrm{2}}{−\mathrm{4}}=\frac{{y}}{\mathrm{3}}=\frac{{z}}{\mathrm{3}} \\ $$ Terms of Service…

Question-61907

Question Number 61907 by naka3546 last updated on 11/Jun/19 Commented by MJS last updated on 12/Jun/19 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}=\infty\:\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\:\sqrt[{{k}}]{{n}}}=\infty\:\mathrm{for}\:{k}\in\mathbb{N}^{\bigstar} \\ $$$$ \\ $$$$\mathrm{calculating}\:\Omega_{{n}}…

y-1-4-ln-1-x-1-x-1-2-arctgx-y-

Question Number 127434 by MathSh last updated on 29/Dec/20 $${y}=\frac{\mathrm{1}}{\mathrm{4}}{ln}\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}−\frac{\mathrm{1}}{\mathrm{2}}{arctgx} \\ $$$${y}'=? \\ $$ Commented by mohammad17 last updated on 29/Dec/20 $${y}^{'} =\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\left[\left(\mathrm{1}−{x}\right)\left(\mathrm{1}\right)−\left(\mathrm{1}+{x}\right)\left(−\mathrm{1}\right)\right]\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }\right)−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}}…

The-objective-of-this-exercise-is-to-calculate-lim-n-1-n-k-1-n-1-n-k-Given-S-n-k-1-n-1-k-U-n-2-2-S-n-and-V-n-2-n-1-Sn-1-show-thatlim-n-Sn-2-sh

Question Number 127430 by mathocean1 last updated on 29/Dec/20 $${The}\:{objective}\:{of}\:{this}\:{exercise} \\ $$$${is}\:{to}\:{calculate}\:\underset{{n}\rightarrow+\infty} {{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\:×\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{n}+{k}}}. \\ $$$${Given}\:{S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}}};\:{U}_{{n}} =\mathrm{2}\sqrt{\mathrm{2}}−{S}_{{n}} \\ $$$${and}\:{V}_{{n}} =\mathrm{2}\sqrt{{n}+\mathrm{1}}−{Sn}. \\…

From-1-to-50-1-and-50-includes-fev-n-for-n-2-1-n-n-full-number-

Question Number 127414 by MathSh last updated on 29/Dec/20 $${From}\:\mathrm{1}\:{to}\:\mathrm{50}\:\left(\mathrm{1}\:{and}\:\mathrm{50}\:{includes}\right) \\ $$$${fev}\:{n}\:{for}\:\frac{\left({n}^{\mathrm{2}} −\mathrm{1}\right)!}{\left({n}!\right)^{{n}} }\:{full}\:{number} \\ $$ Commented by talminator2856791 last updated on 29/Dec/20 $$\:\mathrm{what}\:\mathrm{is}\:\mathrm{fev}? \\…