Question Number 191652 by 073 last updated on 28/Apr/23 Commented by 073 last updated on 28/Apr/23 $$\mathrm{solution}???? \\ $$ Answered by aleks041103 last updated on…
Question Number 126114 by zakirullah last updated on 17/Dec/20 Answered by talminator2856791 last updated on 17/Dec/20 $$\:\mathrm{quantity}\:\frac{\:\:\:\frac{\mathrm{100\%}}{\mathrm{20\%}}\:×\:\mathrm{90}\:\:\:\:\:}{\mathrm{48}}\:\mathrm{kg} \\ $$$$\:=\:\mathrm{9}.\mathrm{375}\:\mathrm{kg} \\ $$ Commented by zakirullah last…
Question Number 126117 by zakirullah last updated on 17/Dec/20 Answered by talminator2856791 last updated on 17/Dec/20 $$\mathrm{8\%} \\ $$ Commented by zakirullah last updated on…
Question Number 60577 by naka3546 last updated on 22/May/19 $$\mathrm{2}\sqrt{\mathrm{1}\:+\:\mathrm{3}\sqrt{\mathrm{1}\:+\:\mathrm{5}\sqrt{\mathrm{1}\:+\:\mathrm{7}\sqrt{\mathrm{1}\:+\:\mathrm{11}\sqrt{\mathrm{1}\:+\:\mathrm{13}\sqrt{\mathrm{1}\:+\:\mathrm{17}\sqrt{…}}}}}}}\:\:=\:\:{x} \\ $$$${x}\:\:=\:\:? \\ $$ Commented by ajfour last updated on 22/May/19 $$\mathrm{Is}\:\mathrm{there}\:\mathrm{such}\:\mathrm{a}\:\mathrm{question}\:\mathrm{in}\:\mathrm{a}\:\mathrm{book}? \\ $$ Answered…
Question Number 191651 by 073 last updated on 28/Apr/23 Commented by 073 last updated on 28/Apr/23 $$\mathrm{solution}\:\mathrm{please}??? \\ $$ Answered by aleks041103 last updated on…
Question Number 191640 by vishal1234 last updated on 28/Apr/23 $${x}^{\mathrm{3}} −\mathrm{1}\:=\:\left({x}−\mathrm{1}\right)\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{1}\:{and}\:{x}\:=\:\frac{−\mathrm{1}\pm\sqrt{\mathrm{3}}\:{i}}{\mathrm{2}} \\ $$$$\Rightarrow\:{w}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}{i}\:}{\mathrm{2}}\:{and}\:{w}^{\mathrm{2}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:−\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{i} \\ $$$$\Rightarrow\:{w}^{\mathrm{3}} \:=\:\mathrm{1} \\ $$$${similarly}\:{x}^{\mathrm{3}} \:+\:\mathrm{1}=\:\mathrm{0} \\ $$$$\Rightarrow\:{x}\:=\:−\mathrm{1}\:{and}\:{x}\:=−{w}^{\mathrm{2}}…
Question Number 126098 by ZiYangLee last updated on 17/Dec/20 $$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\mathrm{27}\left(\mathrm{sin}^{\mathrm{4}} \alpha+\mathrm{2cos}^{\mathrm{4}} \alpha\right)\geqslant\mathrm{16}\left(\mathrm{sin2}\alpha\right)^{\mathrm{2}} \\ $$ Answered by MJS_new last updated on 17/Dec/20 $$\mathrm{sin}\:\mathrm{2}\alpha\:=\mathrm{2sin}\:\alpha\:\mathrm{cos}\:\alpha \\…
Question Number 126097 by amns last updated on 17/Dec/20 Commented by amns last updated on 17/Dec/20 $$\mathrm{I}\:\mathrm{need}\:\mathrm{someone}'\mathrm{s}\:\mathrm{help}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}!!! \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 191626 by yaba1 last updated on 27/Apr/23 Answered by a.lgnaoui last updated on 28/Apr/23 $$\:\:\:\mathrm{Calcul}\:\mathrm{de}\:\mathrm{Resistance}\:\mathrm{dans}\:\mathrm{les}\:\mathrm{4}\:\mathrm{circuits} \\ $$$$\bullet\mathrm{1}\boldsymbol{\mathrm{a}}\:\:\:\boldsymbol{\mathrm{U}}=\boldsymbol{\mathrm{RI}}\:\:\:\mathrm{avec}\:\:\frac{\mathrm{1}}{\mathrm{R}}=\frac{\mathrm{1}}{\mathrm{R1}}+\frac{\mathrm{1}}{\mathrm{R2}}+\frac{\mathrm{1}}{\mathrm{R3}} \\ $$$$\:\:\:\:\:=\frac{\mathrm{R1}+\mathrm{R2}}{\mathrm{R1}×\mathrm{R2}}+\frac{\mathrm{1}}{\mathrm{R3}}=\frac{\left(\mathrm{R1}×\mathrm{R3}+\mathrm{R2}×\mathrm{R3}+\mathrm{R1}×\mathrm{R2}\right)}{\mathrm{R1}×\mathrm{R2}×\mathrm{R3}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{R}}=\frac{\mathrm{R1}×\mathrm{R2}×\mathrm{R3}}{\mathrm{R1}×\mathrm{R2}+\mathrm{R2}×\mathrm{R3}+\mathrm{R1}×\mathrm{R3}} \\ $$$$…
Question Number 126082 by amns last updated on 17/Dec/20 $$\boldsymbol{\mathrm{There}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{only}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{three}}\:-\:\boldsymbol{\mathrm{digit}}\:\boldsymbol{\mathrm{number}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{square}} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{also}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{cube}}.\:\boldsymbol{\mathrm{Now}}\:\boldsymbol{\mathrm{can}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{tell}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{number}}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\left[{Help}\:{me}\right] \\ $$ Commented by mr…