Menu Close

Category: None

I-am-very-sorry-mr-W-sir-for-taking-your-valuable-time-thank-you-very-much-i-got-my-mistake-I-will-work-on-my-basics-thank-you-and-I-am-very-sorry-

Question Number 60398 by Kunal12588 last updated on 20/May/19 $${I}\:{am}\:{very}\:{sorry}\:{mr}\:{W}\:{sir}\:{for}\:{taking}\:{your}\: \\ $$$${valuable}\:{time} \\ $$$${thank}\:{you}\:{very}\:{much}\:{i}\:{got}\:{my}\:{mistake}. \\ $$$${I}\:{will}\:{work}\:{on}\:{my}\:{basics}\:{thank}\:{you} \\ $$$${and}\:{I}\:{am}\:{very}\:{sorry}. \\ $$ Commented by mr W last…

lim-x-0-sin-picos-2-x-x-2-why-it-can-not-be-solved-this-way-lim-x-0-sin-picos-2-x-x-2-lim-x-0-sin-picos-2-x-picos-2-x-lim-x-0-picos-2-x-x-2-pi-lim-x-0-cos-2-x-x-2

Question Number 60386 by Kunal12588 last updated on 20/May/19 $$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} } \\ $$$${why}\:{it}\:{can}\:{not}\:{be}\:{solved}\:{this}\:{way} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{sin}\left(\pi{cos}^{\mathrm{2}} {x}\right)}{\pi{cos}^{\mathrm{2}} {x}}×\underset{{x}\rightarrow\mathrm{0}}…

Calculate-the-correlation-coefficient-and-construct-the-regression-equation-X-i-11-11-9-12-13-14-11-Y-i-13-14-12-16-17-17-15-

Question Number 125905 by MathSh last updated on 15/Dec/20 $${Calculate}\:{the}\:{correlation} \\ $$$${coefficient}\:{and}\:{construct} \\ $$$${the}\:{regression}\:{equation}: \\ $$$$\boldsymbol{{X}}_{\boldsymbol{{i}}} :\:\mathrm{11};\mathrm{11};\mathrm{9};\mathrm{12};\mathrm{13};\mathrm{14};\mathrm{11} \\ $$$$\boldsymbol{{Y}}_{\boldsymbol{{i}}} :\:\mathrm{13};\mathrm{14};\mathrm{12};\mathrm{16};\mathrm{17};\mathrm{17};\mathrm{15} \\ $$ Terms of Service…

It-is-given-that-I-1-xg-x-1-x-dx-I-2-g-x-1-x-dx-Find-I-2-I-1-Thanks-

Question Number 191435 by Matica last updated on 24/Apr/23 $$\:{It}\:{is}\:{given}\:{that}\:{I}_{\mathrm{1}} =\int{xg}\left[{x}\left(\mathrm{1}−{x}\right)\right]{dx}\:,\: \\ $$$${I}_{\mathrm{2}} =\:\int{g}\left[{x}\left(\mathrm{1}−{x}\right)\right]{dx}.\:{Find}\:\frac{{I}_{\mathrm{2}} }{{I}_{\mathrm{1}} }.\:{Thanks}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

suppose-the-solution-set-of-3-gt-c-1-amp-d-1-lt-10-is-x-lt-c-d-lt-y-then-x-y-

Question Number 125882 by harckinwunmy last updated on 14/Dec/20 $$\mathrm{suppose}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\left\{\mathrm{3}>\mid\mathrm{c}+\mathrm{1}\mid\&\mid\mathrm{d}−\mathrm{1}\mid<\mathrm{10}\right\} \\ $$$$\mathrm{is}\:\mathrm{x}<\mathrm{c}+\mathrm{d}<\mathrm{y},\:\mathrm{then}\:\left(\mathrm{x},\mathrm{y}\right)=? \\ $$ Commented by talminator2856791 last updated on 15/Dec/20 $$\:\left(−\mathrm{12};\:\mathrm{11}\right)? \\ $$ Commented…

find-the-greatest-coeeficient-of-1-x-2-2-i-have-applied-Q-125697-but-i-got-two-negative-values-of-n-after-i-have-made-k-2n-for-positive-coefficient-I-believe-it-should-have-a-greatest-coeefi

Question Number 125881 by aurpeyz last updated on 14/Dec/20 $${find}\:{the}\:{greatest}\:{coeeficient}\:{of} \\ $$$$\left(\mathrm{1}+\frac{{x}}{\mathrm{2}}\right)^{−\mathrm{2}} \\ $$$${i}\:{have}\:{applied}\:{Q}.\mathrm{125697}\:{but}\:{i}\:{got}\:{two} \\ $$$${negative}\:{values}\:{of}\:{n}\:{after}\:{i}\:{have} \\ $$$${made}\:{k}=\mathrm{2}{n}\:{for}\:{positive}\:{coefficient}. \\ $$$$ \\ $$$${I}\:{believe}\:{it}\:{should}\:{have}\:{a}\:{greatest} \\ $$$${coeeficient}\:{since}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{k}} {decreases}\:{as}…