Menu Close

Category: None

Proof-that-2-2-R-Q-

Question Number 190480 by aba last updated on 03/Apr/23 $$\mathrm{Proof}\:\mathrm{that}\:\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{2}}} \in\mathbb{R}\backslash\mathrm{Q} \\ $$ Answered by mehdee42 last updated on 04/Apr/23 $${lem}:\:{if}\:\:{p}\notin{Q}\Rightarrow\sqrt{{p}}\notin{Q} \\ $$$${clim}:\:\mathrm{2}^{\sqrt{\mathrm{2}}} \notin{Q} \\…

Question-124932

Question Number 124932 by aurpeyz last updated on 07/Dec/20 Answered by som(math1967) last updated on 07/Dec/20 $$\mathrm{Equivalent}\:\mathrm{capacitance} \\ $$$$\frac{\mathrm{1}}{\mathrm{C}}=\frac{\mathrm{1}}{\mathrm{4}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{3}}{\mathrm{6}} \\ $$$$\mathrm{C}=\mathrm{2}\mu\mathrm{F} \\ $$$$\mathrm{charge}\:=\mathrm{12}×\mathrm{2}=\mathrm{24}×\mathrm{10}^{−\mathrm{6}} \mathrm{coulomb} \\…

u-n-1-u-n-3-v-n-1-4v-n-u-0-v-0-1-w-n-1-u-n-v-n-show-that-w-n-is-bounded-find-a-b-R-such-that-a-w-n-b-

Question Number 190464 by alcohol last updated on 03/Apr/23 $$\begin{cases}{{u}_{{n}+\mathrm{1}} \:=\:{u}_{{n}} −\mathrm{3}\:}\\{{v}_{{n}+\mathrm{1}} \:=\:\mathrm{4}{v}_{{n}} }\end{cases}\::\:{u}_{\mathrm{0}} \:=\:{v}_{\mathrm{0}} \:=\:\mathrm{1} \\ $$$${w}_{{n}} \:=\:\frac{\mathrm{1}−{u}_{{n}} }{{v}_{{n}} } \\ $$$$−\:{show}\:{that}\:{w}_{{n}} \:{is}\:{bounded} \\…

If-3-2019-k-is-a-multiple-of-11-find-the-smallest-positive-integer-k-

Question Number 124931 by ZiYangLee last updated on 07/Dec/20 $$\mathrm{If}\:\mathrm{3}^{\mathrm{2019}} +{k}\:\mathrm{is}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{11},\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{positive}\:\mathrm{integer}\:{k}. \\ $$ Answered by MJS_new last updated on 07/Dec/20 $$\mathrm{3}^{\mathrm{0}} =\mathrm{11}{n}+\mathrm{1} \\…

cos-1-5-x-sin-1-5-x-sinx-cosx-dx-cos-3-2-x-sin-1-2-x-cos-1-2-x-dx-sin-3-2-x-sin-1-2-x-cos-1-2-x-dx-cosx-sin-1-2-x-dx-sinx-cos-1-2-x-

Question Number 190452 by vishal1234 last updated on 03/Apr/23 $$\int\frac{{cos}^{\mathrm{1}.\mathrm{5}} {x}−{sin}^{\mathrm{1}.\mathrm{5}} {x}}{\:\sqrt{{sinx}\:{cosx}}}\:{dx} \\ $$$$=\:\int\frac{{cos}^{\frac{\mathrm{3}}{\mathrm{2}}} {x}}{{sin}^{\mathrm{1}/\mathrm{2}} {x}\:{cos}^{\mathrm{1}/\mathrm{2}} {x}}{dx}−\int\frac{{sin}^{\frac{\mathrm{3}}{\mathrm{2}}} {x}}{{sin}^{\mathrm{1}/\mathrm{2}} {x}\:{cos}^{\mathrm{1}/\mathrm{2}} {x}}\:{dx} \\ $$$$=\:\int\:\frac{{cosx}}{{sin}^{\mathrm{1}/\mathrm{2}} {x}}\:{dx}\:−\:\int\:\frac{{sinx}}{{cos}^{\mathrm{1}/\mathrm{2}} {x}}\:{dx} \\…

Find-n-1-1-2n-3n-2-4n-3-3-n-

Question Number 59377 by jimful last updated on 09/May/19 $$\mathrm{Find}\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}+\mathrm{2n}+\mathrm{3n}^{\mathrm{2}} +\mathrm{4n}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{n}} } \\ $$ Answered by tanmay last updated on 09/May/19 $${S}=\underset{{n}=\mathrm{1}}…