Menu Close

Category: None

Question-190425

Question Number 190425 by 073 last updated on 02/Apr/23 Answered by mahdipoor last updated on 02/Apr/23 $${F}\left({x}\right)={sin}^{−\mathrm{1}} \left({ln}\left({log}\left({x}\right)\right)\right)\Rightarrow−\mathrm{1}\leqslant{ln}\left({log}\left({x}\right)\right)\leqslant\mathrm{1} \\ $$$$\Rightarrow{e}^{−\mathrm{1}} \leqslant{log}\left({x}\right)\leqslant{e}^{\mathrm{1}} \Rightarrow\mathrm{10}^{{e}^{−\mathrm{1}} } \leqslant{x}\leqslant\mathrm{10}^{{e}^{\mathrm{1}} }…

Question-124870

Question Number 124870 by Algoritm last updated on 06/Dec/20 Answered by mindispower last updated on 06/Dec/20 $${ln}\left({x}_{{n}+\mathrm{1}} \right)=\frac{\mathrm{1}}{\mathrm{4}}{ln}\left(\mathrm{81}\right)−\frac{\mathrm{1}}{\mathrm{4}}{ln}\left({x}_{{n}} \right) \\ $$$${W}_{{n}} ={ln}\left({x}_{{n}} \right) \\ $$$${W}_{{n}+\mathrm{1}}…

Determine-the-validity-of-the-following-argument-Having-nasal-congestion-is-not-sufficient-to-be-diagnosed-of-Covid-19-disease-Being-accinated-against-covid-19-is-necessary-for-not-being-diagnosed-

Question Number 190401 by pete last updated on 17/Apr/23 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{validity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{argument}. \\ $$$$\mathrm{Having}\:\mathrm{nasal}\:\mathrm{congestion}\:\mathrm{is}\:\mathrm{not}\:\mathrm{sufficient}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{diagnosed}\:\mathrm{of}\:\mathrm{Covid}−\mathrm{19}\:\mathrm{disease}. \\ $$$$\mathrm{Being}\:\mathrm{accinated}\:\mathrm{against}\:\mathrm{covid}−\mathrm{19}\:\mathrm{is}\: \\ $$$$\mathrm{necessary}\:\mathrm{for}\:\mathrm{not}\:\mathrm{being}\:\mathrm{diagnosed} \\ $$$$\mathrm{of}\:\mathrm{covid}−\mathrm{19}.\:\mathrm{Therefore},\mathrm{if}\:\mathrm{i}'\mathrm{m}\:\mathrm{diagnosed} \\ $$$$\mathrm{of}\:\mathrm{covid}−\mathrm{19}\:\mathrm{then}\:\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{the}\:\mathrm{case}\:\mathrm{that} \\ $$$$\mathrm{either}\:\mathrm{I}\:\mathrm{have}\:\mathrm{not}\:\mathrm{vaccinated}\:\mathrm{against}\:\mathrm{covid}−\mathrm{19} \\…