Menu Close

Category: None

Question-59226

Question Number 59226 by azizullah last updated on 06/May/19 Answered by MJS last updated on 06/May/19 $$\mathrm{trying}\:\mathrm{with}\:{x}\in\mathbb{Z}\:\mathrm{at}\:\mathrm{first} \\ $$$$\sqrt{−{x}}\:\in\mathbb{Z}\:\Rightarrow\:{x}=−{z}^{\mathrm{2}} \\ $$$${x}=−\mathrm{1}\:\Rightarrow\:\mathrm{wrong} \\ $$$${x}=−\mathrm{4}\:\Rightarrow\:\mathrm{wrong} \\ $$$${x}=−\mathrm{9}\:\Rightarrow\:\mathrm{true}…

make-x-the-subject-of-x-m-x-

Question Number 59201 by otchereabdullai@gmail.com last updated on 05/May/19 $$\mathrm{make}\:\mathrm{x}\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\:\mathrm{x}=\mathrm{m}+\mathrm{x} \\ $$ Commented by Forkum Michael Choungong last updated on 05/May/19 $${x}−{x}={m} \\ $$$${x}\left(\mathrm{1}−\mathrm{1}\right)={m} \\…

Question-59193

Question Number 59193 by salahahmed last updated on 05/May/19 Answered by MJS last updated on 06/May/19 $$\mathrm{for}\:{x}\in\mathbb{N}\:\underset{\mathrm{0}} {\overset{\infty} {\int}}{t}^{{x}} \mathrm{e}^{−{t}} {dt}={x}! \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{have}\:\mathrm{one}\:\mathrm{obvious}\:\mathrm{solution}\:\mathrm{at}\:{x}=\mathrm{5} \\ $$$${x}^{\mathrm{3}}…

Question-190270

Question Number 190270 by 073 last updated on 30/Mar/23 Answered by mr W last updated on 30/Mar/23 $${a}_{{n}} =\left({n}−\mathrm{6}\right)\left({n}+\mathrm{3}\right)<\mathrm{0} \\ $$$$\Rightarrow−\mathrm{3}<{n}<\mathrm{6} \\ $$$$\Rightarrow{n}=\mathrm{1},\mathrm{2},…,\mathrm{5}\: \\ $$$${i}.{e}.\:\mathrm{5}\:{terms}\:{are}\:{negative}.…

Question-190253

Question Number 190253 by 073 last updated on 30/Mar/23 Answered by cortano12 last updated on 30/Mar/23 $$\:\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{tan}\:\mathrm{x}+\mathrm{x}\right)\left(\mathrm{tan}\:\mathrm{x}−\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} \:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}} \\ $$$$\:\mathrm{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{x}+\mathrm{x}}{\mathrm{x}}\:.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{x}−\mathrm{x}}{\mathrm{x}\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}…