Menu Close

Category: None

S-N-S-2-0-2-1-2-13-7-0-7-1-7-15-11-0-11-1-11-100-determinate-the-sum-of-positive-divisors-of-S-

Question Number 124696 by mathocean1 last updated on 05/Dec/20 $${S}\:\in\:\mathbb{N}. \\ $$$${S}=\left(\mathrm{2}^{\mathrm{0}} ×\mathrm{2}^{\mathrm{1}} ×…×\mathrm{2}^{\mathrm{13}} \right)\left(\mathrm{7}^{\mathrm{0}} ×\mathrm{7}^{\mathrm{1}} ×…×\mathrm{7}^{\mathrm{15}} \right)\left(\mathrm{11}^{\mathrm{0}} ×\mathrm{11}^{\mathrm{1}} ×…×\mathrm{11}^{\mathrm{100}} \right) \\ $$$${determinate}\:{the}\:{sum}\:{of}\:\:{positive} \\ $$$${divisors}\:{of}\:{S}.…

Determinate-m-such-that-m-is-written-abcca-in-base-5-and-is-written-bbab-in-base-8-

Question Number 124694 by mathocean1 last updated on 05/Dec/20 $${Determinate}\:{m}\:{such}\:{that} \\ $$$${m}\:{is}\:{written}\:{abcca}\:{in}\:{base}\:\mathrm{5}\:{and}\:{is} \\ $$$${written}\:{bbab}\:{in}\:{base}\:\mathrm{8}. \\ $$ Answered by floor(10²Eta[1]) last updated on 05/Dec/20 $$\mathrm{M}=\mathrm{abcca}_{\mathrm{5}} =\mathrm{bbab}_{\mathrm{8}}…

Demonstrate-that-a-b-N-if-a-b-can-not-be-simplified-then-a-b-a-2-ab-b-2-can-not-also-be-simplified-

Question Number 124693 by mathocean1 last updated on 05/Dec/20 $${Demonstrate}\:{that}\:\forall\:{a},{b}\:\in\mathbb{N}^{\ast} \:{if}\:\frac{{a}}{{b}} \\ $$$${can}\:{not}\:{be}\:{simplified},\:{then}\:\frac{{a}+{b}}{{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} } \\ $$$${can}\:{not}\:{also}\:{be}\:{simplified}. \\ $$$$ \\ $$ Answered by MJS_new last…

Question-190230

Question Number 190230 by 073 last updated on 29/Mar/23 Answered by Rasheed.Sindhi last updated on 29/Mar/23 $$\mathrm{a}_{\mathrm{5}} =\mathrm{5}−\mathrm{1}=\mathrm{4}\:\:\:\left[\:\because\:\:\mathrm{5}=\mathrm{2}\left(\mathrm{2}\right)+\mathrm{1}\:\right] \\ $$$$\mathrm{a}_{\mathrm{6}} =\mathrm{2}\left(\mathrm{6}\right)+\mathrm{3}=\mathrm{15}\:\:\:\left[\:\because\:\mathrm{6}=\mathrm{2}\left(\mathrm{3}\right)\:\right] \\ $$$$\mathrm{a}_{\mathrm{5}} +\mathrm{a}_{\mathrm{6}} =\mathrm{4}+\mathrm{15}=\mathrm{19}…

Solve-in-N-2-a-a-2-b-2-4704-GCD-a-b-7-b-13GCD-a-b-2SCM-a-b-4-3-lt-GCD-a-b-lt-7-GCD-greatest-common-divisor-SCM-smallest-common-multiple-

Question Number 124688 by mathocean1 last updated on 05/Dec/20 $${Solve}\:{in}\:\mathbb{N}^{\mathrm{2}} : \\ $$$${a}.\:\:\begin{cases}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{4704}}\\{{GCD}\left({a};{b}\right)=\mathrm{7}}\end{cases} \\ $$$${b}.\:\:\:\begin{cases}{\mathrm{13}{GCD}\left({a};{b}\right)−\mathrm{2}{SCM}\left({a};{b}\right)=\mathrm{4}}\\{\mathrm{3}<{GCD}\left({a};{b}\right)<\mathrm{7}}\end{cases} \\ $$$$ \\ $$$${GCD}:\:{greatest}\:{common}\:{divisor} \\ $$$${SCM}:\:{smallest}\:{common}\:{multiple} \\ $$…

show-that-the-set-of-prime-numbers-is-infinite-

Question Number 124691 by mathocean1 last updated on 05/Dec/20 $${show}\:{that}\:{the}\:{set}\:{of}\:{prime}\:{numbers} \\ $$$${is}\:{infinite} \\ $$ Answered by MJS_new last updated on 05/Dec/20 $$\mathrm{suppose}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{primes}\:\mathrm{is}\:\mathrm{finite}\:\mathrm{and}\:\mathrm{is}\:{n} \\ $$$$\mathrm{let}\:{N}=\mathrm{1}+\underset{{j}=\mathrm{1}} {\overset{{n}}…