Menu Close

Category: None

Question-189786

Question Number 189786 by sonukgindia last updated on 21/Mar/23 Answered by a.lgnaoui last updated on 22/Mar/23 $${A}\bullet{z}^{{z}} =\left({e}^{{i}\theta} \right)^{{e}^{{i}\theta} } =\left(\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta\right)^{{z}} \\ $$$$={e}^{{z}\mathrm{lnz}} =\mathrm{e}^{\mathrm{e}^{\mathrm{i}\theta} \mathrm{ln}\left(\mathrm{e}^{\mathrm{i}\theta}…

a-b-c-R-Find-triple-of-positive-real-numbers-a-b-c-that-satisfy-a-b-5-b-c-5-c-a-12-

Question Number 58700 by naka3546 last updated on 28/Apr/19 $${a},\:{b},\:{c}\:\:\in\:\:\mathbb{R}^{+} \\ $$$${Find}\:\:{triple}\:\:{of}\:\:{positive}\:\:{real}\:\:{numbers}\:\left({a},\:{b},\:{c}\right)\:\:{that}\:\:{satisfy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{a}\lfloor{b}\rfloor\:\:=\:\:\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{b}\lfloor{c}\rfloor\:\:=\:\:\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{c}\lfloor{a}\rfloor\:\:=\:\:\mathrm{12} \\ $$ Commented by Rasheed.Sindhi last updated…

0-3pi-a-2-sin-2-3-a-2-cos-2-3-sin-4-3-d-

Question Number 189769 by mathocean1 last updated on 21/Mar/23 $$\int_{\mathrm{0}} ^{\mathrm{3}\pi} \sqrt{{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{3}}\right)+{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{3}}\right){sin}^{\mathrm{4}} \left(\frac{\theta}{\mathrm{3}}\right)}\:{d}\theta\:\:=\:? \\ $$ Commented by MJS_new last updated on…

A-photographer-has-matted-and-framed-15-photographs-He-needs-to-select-10-for-the-arts-festival-How-many-ways-can-he-arrange-the-photos-for-the-festival-

Question Number 189740 by naka3546 last updated on 21/Mar/23 $$\mathrm{A}\:\mathrm{photographer}\:\mathrm{has}\:\mathrm{matted}\:\mathrm{and}\:\mathrm{framed}\:\mathrm{15}\:\mathrm{photographs}. \\ $$$$\mathrm{He}\:\mathrm{needs}\:\mathrm{to}\:\mathrm{select}\:\mathrm{10}\:\mathrm{for}\:\mathrm{the}\:\mathrm{arts}\:\mathrm{festival}. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{he}\:\mathrm{arrange}\:\mathrm{the}\:\mathrm{photos} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{festival}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

A-jar-is-full-of-candy-8-pieces-are-yellow-12-pieces-are-red-6-pieces-are-orange-and-4-pieces-are-blue-What-is-the-probability-that-you-pick-out-a-piece-that-is-not-yellow-put-it-back-and-then-pi

Question Number 189739 by naka3546 last updated on 21/Mar/23 $$\mathrm{A}\:\mathrm{jar}\:\mathrm{is}\:\mathrm{full}\:\mathrm{of}\:\mathrm{candy},\:\mathrm{8}\:\mathrm{pieces}\:\mathrm{are}\:\mathrm{yellow},\:\mathrm{12}\:\mathrm{pieces} \\ $$$$\mathrm{are}\:\mathrm{red},\:\mathrm{6}\:\mathrm{pieces}\:\mathrm{are}\:\mathrm{orange}\:\mathrm{and}\:\mathrm{4}\:\mathrm{pieces} \\ $$$$\mathrm{are}\:\mathrm{blue}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{you}\:\mathrm{pick} \\ $$$$\mathrm{out}\:\mathrm{a}\:\mathrm{piece}\:\mathrm{that}\:\mathrm{is}\:\mathrm{not}\:\mathrm{yellow},\:\mathrm{put}\:\mathrm{it}\:\mathrm{back} \\ $$$$\mathrm{and}\:\mathrm{then}\:\mathrm{pick}\:\mathrm{out}\:\mathrm{a}\:\mathrm{yellow}\:\mathrm{piece}? \\ $$ Answered by talminator2856792 last updated…

2-2-2-2-2-2-2-2-

Question Number 124203 by n0y0n last updated on 01/Dec/20 $$\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{2}−\mathrm{2}^{\mathrm{2}−\mathrm{2}^{\mathrm{2}−\mathrm{2}^{\mathrm{2}−…..} } } =?} \\ $$ Commented by n0y0n last updated on 01/Dec/20 $$\:\mathrm{pls}\:\mathrm{details} \\ $$…

Question-58660

Question Number 58660 by Hassen_Timol last updated on 27/Apr/19 Commented by Hassen_Timol last updated on 27/Apr/19 $$\mathrm{Is}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{calculation},\:\mathrm{correct}\:\mathrm{in}\:\mathrm{both} \\ $$$$\mathrm{the}\:\mathrm{way}\:\mathrm{it}\:\mathrm{is}\:\mathrm{written}\:\mathrm{and}\:\mathrm{the}\:\mathrm{result}\:\mathrm{obtained}? \\ $$ Commented by mr W…

Question-124191

Question Number 124191 by Algoritm last updated on 01/Dec/20 Answered by MJS_new last updated on 01/Dec/20 $$\mathrm{well}\:\mathrm{just}\:\mathrm{solve}\:\mathrm{it}! \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{\mathrm{359}−\mathrm{12}\sqrt{\mathrm{78}}}−\sqrt[{\mathrm{3}}]{\mathrm{359}+\mathrm{12}\sqrt{\mathrm{78}}}\right. \\ $$$${x}\approx−\mathrm{2}.\mathrm{17868} \\ $$ Answered by…