Question Number 189436 by 073 last updated on 16/Mar/23 Commented by 073 last updated on 16/Mar/23 $$\mathrm{solution}\:\mathrm{please} \\ $$ Answered by cortano12 last updated on…
Question Number 58364 by Hassen_Timol last updated on 22/Apr/19 $$\mathrm{Let}\:{a}_{{n}} =\:\mathrm{10}\:×\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{{n}} \\ $$$$\:\:\:\:{a}_{{n}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{geometrical}\:\mathrm{sequence} \\ $$$$\:\:{S}_{{n}} \:=\:{a}_{\mathrm{0}} \:+\:{a}_{\mathrm{1}} \:+\:…\:+\:{a}_{{n}−\mathrm{1}} \\ $$$$\:\:\:\:\:{S}_{{n}} =\:\mathrm{10}\:×\:\frac{\mathrm{1}\:−\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{{n}} }{\mathrm{1}\:−\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)} \\ $$$$\boldsymbol{\mathrm{Proove}}\:\boldsymbol{\mathrm{that}}\::…
Question Number 189429 by 073 last updated on 16/Mar/23 Commented by 073 last updated on 16/Mar/23 $$\mathrm{solution}\:\mathrm{please} \\ $$ Answered by cortano12 last updated on…
Question Number 58346 by ANTARES VY last updated on 21/Apr/19 $$\int\frac{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{cos}}\left(\mathrm{2016}°+\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)\right.}×\boldsymbol{\mathrm{dx}} \\ $$ Answered by ANTARES VY last updated on 21/Apr/19 $$\boldsymbol{\mathrm{F}}\left(\boldsymbol{\mathrm{x}}\right)=? \\ $$ Answered…
Question Number 189394 by TUN last updated on 15/Mar/23 $${Prove}\:{that}: \\ $$$${ln}\left({n}+\mathrm{1}\right)<\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{1}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{2}}}+…+\frac{\mathrm{1}}{\:\sqrt{{n}^{\mathrm{2}} +{n}}}\left(\forall{n}\in{N}^{\ast} \right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 189384 by Gbenga last updated on 15/Mar/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 189383 by Gbenga last updated on 15/Mar/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 189374 by mathocean1 last updated on 15/Mar/23 $$\Delta=\left\{\left({x},{y},{z}\right)\:\in\:\mathbb{R}^{\mathrm{3}} :{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1}\:,\:\:{x}\geqslant\mathrm{0},\:\mathrm{0}\leqslant{z}\leqslant\mathrm{1}+{y}\right\}. \\ $$$${calculate}: \\ $$$$\int\int\int_{\Delta} {dxdydz}. \\ $$ Answered by Ar Brandon last…
Question Number 123829 by Algoritm last updated on 28/Nov/20 Commented by Algoritm last updated on 28/Nov/20 $$\mathrm{prove}\:\mathrm{that}\: \\ $$ Commented by mr W last updated…
Question Number 189367 by 073 last updated on 15/Mar/23 Answered by HeferH last updated on 15/Mar/23 $$\:\Box\left(\left(\mathrm{a}+\mathrm{1}\right)^{\mathrm{2}} \right)=\mathrm{a} \\ $$$$\:\bigtriangleup\left(\mathrm{a}\right)\:=\:\frac{\mathrm{3a}}{\mathrm{2}} \\ $$$$\:\oplus\left(\frac{\mathrm{3a}}{\mathrm{2}}\right)\:=\:\mathrm{a}+\mathrm{7} \\ $$$$\:\bullet\:\bigtriangleup\left(\mathrm{18}\right)\:=\:\frac{\mathrm{3}\centerdot\mathrm{18}}{\mathrm{2}}\:=\:\mathrm{27} \\…