Question Number 220588 by SdC355 last updated on 16/May/25 $$\mathrm{Eucleadian}\:\mathrm{Space}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{Subset}\:{A} \\ $$$${A}=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} \mid{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\right\},\:{B}=\left\{\left(\frac{{t}−\mathrm{1}}{{t}}\:\mathrm{cos}\left({t}\right),\frac{{t}−\mathrm{1}}{{t}}\mathrm{sin}\left({t}\right)\right)\in\mathbb{R}^{\mathrm{2}} \mid\mathrm{1}\leq{t}\in\mathbb{R}\right\} \\ $$$$\mathrm{Show}\:\mathrm{that}\:{X}={A}\cup{B}\:\mathrm{is}\:\mathrm{Connect}\:\mathrm{set} \\ $$ Commented by SdC355 last…
Question Number 220590 by SdC355 last updated on 16/May/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:{w}\mathrm{Ci}\left({w}\right){e}^{−{w}} \:\mathrm{d}{w}=?? \\ $$$$\mathrm{Ci}\left({w}\right)=−\int_{{w}} ^{\:\infty} \:\:\frac{\mathrm{cos}\left({t}\right)}{{t}}\:\mathrm{d}{t} \\ $$ Answered by breniam last updated on…
Question Number 220580 by SdC355 last updated on 16/May/25 $$\int_{−\infty\boldsymbol{{i}}} ^{+\infty\boldsymbol{{i}}} \:\frac{\mathrm{atan}\left({w}\right)}{{w}}{e}^{\mathrm{3}\boldsymbol{{i}}{w}} \mathrm{d}{w}=?? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220562 by SdC355 last updated on 15/May/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{ln}\left({z}^{\mathrm{2}} +\mathrm{1}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z}={I} \\ $$$${I}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{ln}\left({z}^{\mathrm{2}} +\mathrm{1}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}{e}^{−{zt}} \:\mathrm{d}{z} \\ $$$${I}'\left({t}\right)=−\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{z}\centerdot\mathrm{ln}\left({z}^{\mathrm{2}}…
Question Number 220563 by mathocean1 last updated on 15/May/25 $${Calculate}\:{the}\:{exact}\:{value}\:{of}\:: \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{4}} {e}^{−{x}^{\mathrm{2}} } {dx} \\ $$ Answered by SdC355 last updated on 15/May/25…
Question Number 220502 by SdC355 last updated on 14/May/25 $$\mathrm{each}\:{J}_{\nu} \left({z}\right),{Y}_{\nu} \left({z}\right)\:\mathrm{are}\:\mathrm{linear}\:\mathrm{independent}….?? \\ $$$${W}_{\mathrm{Ronskian}} \left\{{J}_{\nu} ^{\:} \left({z}\right),{Y}_{\nu} \left({z}\right)\right\}=\begin{vmatrix}{{J}_{\nu} \left({z}\right)}&{\:{Y}_{\nu} \left({z}\right)}\\{{J}_{\nu} '\left({z}\right)}&{{Y}_{\nu} '\left({z}\right)}\end{vmatrix} \\ $$$$={J}_{\nu} ^{\left(\mathrm{1}\right)}…
Question Number 220480 by SdC355 last updated on 13/May/25 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{teach}\:\mathrm{me}\:\mathrm{about} \\ $$$$\mathrm{Weber}\:\mathrm{function}\:\boldsymbol{\mathrm{E}}_{\nu} \left({z}\right)\:\mathrm{and}\:\mathrm{Anger}\:\mathrm{function}\:\boldsymbol{\mathrm{J}}_{\nu} \left({z}\right)?? \\ $$$$\: \\ $$$$\mathrm{Let}'\mathrm{s}\:\mathrm{Consider}\:{n}-\mathrm{dimensional}\:\mathrm{Euclidean}\:\mathrm{Space} \\ $$$$\mathrm{and}\:\mathrm{function}\:{f}\:,\:{f};\mathbb{R}^{{n}} \rightarrow\mathbb{R} \\ $$$$\mathrm{Helmholt}{z}\:\mathrm{Equation}\:\mathrm{defined}\:\mathrm{as} \\ $$$$\left(\bigtriangledown^{\mathrm{2}}…
Question Number 220393 by Hanuda354 last updated on 12/May/25 Commented by Hanuda354 last updated on 12/May/25 $$\mathrm{ABCD}\:\:\mathrm{is}\:\:\mathrm{a}\:\:\mathrm{square}.\:\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\:\mathrm{of}\:\:{x}. \\ $$ Answered by mr W last updated…
Question Number 220388 by MrGaster last updated on 12/May/25 Commented by MrGaster last updated on 12/May/25 When\(n\)is an integer and\(x\)is a positive number,is the sum of\(J_n(x)\cdot J{n+2}(x)\)over\(n\)equal to 0?If so,how to prove it? Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220390 by MATHEMATICSAM last updated on 12/May/25 $$\mathrm{sin}\theta\:+\:\mathrm{sin}\left(\pi\:+\:\theta\right)\:+\:\mathrm{sin}\left(\mathrm{2}\pi\:+\:\theta\right)\:+\:…\: \\ $$$$+\:\mathrm{sin}\left({n}\pi\:+\:\theta\right)\:=\:?\:\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd} \\ $$$$\mathrm{integer}. \\ $$ Answered by mr W last updated on 12/May/25 $$\mathrm{sin}\:\left({k}\pi+\theta\right)=\mathrm{sin}\:{k}\pi\:\mathrm{cos}\:\theta+\mathrm{cos}\:{k}\pi\:\mathrm{sin}\:\theta…