Menu Close

Category: None

Eucleadian-Space-R-2-and-Subset-A-A-x-y-R-2-x-2-y-2-1-B-t-1-t-cos-t-t-1-t-sin-t-R-2-1-t-R-Show-that-X-A-B-is-Connect-set-

Question Number 220588 by SdC355 last updated on 16/May/25 $$\mathrm{Eucleadian}\:\mathrm{Space}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{Subset}\:{A} \\ $$$${A}=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} \mid{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\right\},\:{B}=\left\{\left(\frac{{t}−\mathrm{1}}{{t}}\:\mathrm{cos}\left({t}\right),\frac{{t}−\mathrm{1}}{{t}}\mathrm{sin}\left({t}\right)\right)\in\mathbb{R}^{\mathrm{2}} \mid\mathrm{1}\leq{t}\in\mathbb{R}\right\} \\ $$$$\mathrm{Show}\:\mathrm{that}\:{X}={A}\cup{B}\:\mathrm{is}\:\mathrm{Connect}\:\mathrm{set} \\ $$ Commented by SdC355 last…

0-ln-z-2-1-z-2-1-dz-I-I-t-0-ln-z-2-1-z-2-1-e-zt-dz-I-t-0-z-ln-z-2-1-z-2-1-e-zt-dz-I-t-0-z-2-ln-z-2-1-ln-z-2-1-ln-

Question Number 220562 by SdC355 last updated on 15/May/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{ln}\left({z}^{\mathrm{2}} +\mathrm{1}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z}={I} \\ $$$${I}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{ln}\left({z}^{\mathrm{2}} +\mathrm{1}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}{e}^{−{zt}} \:\mathrm{d}{z} \\ $$$${I}'\left({t}\right)=−\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{z}\centerdot\mathrm{ln}\left({z}^{\mathrm{2}}…

each-J-z-Y-z-are-linear-independent-W-Ronskian-J-z-Y-z-determinant-J-z-Y-z-J-z-Y-z-J-1-z-Y-z-J-z-Y-1-z-J-1-

Question Number 220502 by SdC355 last updated on 14/May/25 $$\mathrm{each}\:{J}_{\nu} \left({z}\right),{Y}_{\nu} \left({z}\right)\:\mathrm{are}\:\mathrm{linear}\:\mathrm{independent}….?? \\ $$$${W}_{\mathrm{Ronskian}} \left\{{J}_{\nu} ^{\:} \left({z}\right),{Y}_{\nu} \left({z}\right)\right\}=\begin{vmatrix}{{J}_{\nu} \left({z}\right)}&{\:{Y}_{\nu} \left({z}\right)}\\{{J}_{\nu} '\left({z}\right)}&{{Y}_{\nu} '\left({z}\right)}\end{vmatrix} \\ $$$$={J}_{\nu} ^{\left(\mathrm{1}\right)}…

Can-you-guys-teach-me-about-Weber-function-E-z-and-Anger-function-J-z-Let-s-Consider-n-dimensional-Euclidean-Space-and-function-f-f-R-n-R-Helmholtz-Equation-defined-as-2-k-2-f-0-an

Question Number 220480 by SdC355 last updated on 13/May/25 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{teach}\:\mathrm{me}\:\mathrm{about} \\ $$$$\mathrm{Weber}\:\mathrm{function}\:\boldsymbol{\mathrm{E}}_{\nu} \left({z}\right)\:\mathrm{and}\:\mathrm{Anger}\:\mathrm{function}\:\boldsymbol{\mathrm{J}}_{\nu} \left({z}\right)?? \\ $$$$\: \\ $$$$\mathrm{Let}'\mathrm{s}\:\mathrm{Consider}\:{n}-\mathrm{dimensional}\:\mathrm{Euclidean}\:\mathrm{Space} \\ $$$$\mathrm{and}\:\mathrm{function}\:{f}\:,\:{f};\mathbb{R}^{{n}} \rightarrow\mathbb{R} \\ $$$$\mathrm{Helmholt}{z}\:\mathrm{Equation}\:\mathrm{defined}\:\mathrm{as} \\ $$$$\left(\bigtriangledown^{\mathrm{2}}…

Question-220393

Question Number 220393 by Hanuda354 last updated on 12/May/25 Commented by Hanuda354 last updated on 12/May/25 $$\mathrm{ABCD}\:\:\mathrm{is}\:\:\mathrm{a}\:\:\mathrm{square}.\:\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\:\mathrm{of}\:\:{x}. \\ $$ Answered by mr W last updated…

Question-220388

Question Number 220388 by MrGaster last updated on 12/May/25 Commented by MrGaster last updated on 12/May/25 When\(n\)is an integer and\(x\)is a positive number,is the sum of\(J_n(x)\cdot J{n+2}(x)\)over\(n\)equal to 0?If so,how to prove it? Terms of Service Privacy Policy Contact: info@tinkutara.com

sin-sin-pi-sin-2pi-sin-npi-when-n-is-an-odd-integer-

Question Number 220390 by MATHEMATICSAM last updated on 12/May/25 $$\mathrm{sin}\theta\:+\:\mathrm{sin}\left(\pi\:+\:\theta\right)\:+\:\mathrm{sin}\left(\mathrm{2}\pi\:+\:\theta\right)\:+\:…\: \\ $$$$+\:\mathrm{sin}\left({n}\pi\:+\:\theta\right)\:=\:?\:\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd} \\ $$$$\mathrm{integer}. \\ $$ Answered by mr W last updated on 12/May/25 $$\mathrm{sin}\:\left({k}\pi+\theta\right)=\mathrm{sin}\:{k}\pi\:\mathrm{cos}\:\theta+\mathrm{cos}\:{k}\pi\:\mathrm{sin}\:\theta…