Menu Close

Category: None

Question-187947

Question Number 187947 by thean last updated on 24/Feb/23 Answered by witcher3 last updated on 24/Feb/23 $$\left(\mathrm{1}+\mathrm{i}\right)^{\mathrm{2000}} =\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2000}} {\sum}}\mathrm{i}^{\mathrm{k}} \mathrm{C}_{\mathrm{2000}} ^{\mathrm{k}} =\left(\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{1000}} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{k}}…

Question-122409

Question Number 122409 by help last updated on 16/Nov/20 Answered by sewak last updated on 17/Nov/20 $$\mathrm{Solun}.: \\ $$$$\mathrm{Let}\:\:\mathrm{no}.\:\mathrm{of}\:\:\mathrm{tickets}\:\mathrm{sold}\:\mathrm{to}\:\mathrm{audit}\:\:\mathrm{be}\:\mathrm{x}.\: \\ $$$$\mathrm{and}\:\mathrm{cenior}\:\mathrm{audit}\:\mathrm{be}\:\mathrm{y}. \\ $$$$\mathrm{We}\:\mathrm{have},\:\mathrm{no}.\:\mathrm{of}\:\mathrm{ticket}\:\mathrm{sold}\:\mathrm{to}\:\mathrm{child}=\mathrm{95} \\ $$$$\mathrm{From}\:\mathrm{1}^{\mathrm{st}}…

At-20-C-the-solubility-of-Methoxymethane-in-water-is-71-0-g-L-1-however-ethanol-and-water-are-miscible-Given-that-Ethanol-H-3-C-C-O-Methoxymethane-H-3-C-O-CH-3-X-

Question Number 56861 by Hassen_Timol last updated on 25/Mar/19 $$\mathrm{At}\:\mathrm{20}°\mathrm{C},\:\mathrm{the}\:\mathrm{solubility}\:\mathrm{of}\:\mathrm{Methoxymethane} \\ $$$$\mathrm{in}\:\mathrm{water}\:\mathrm{is}\:\mathrm{71}.\mathrm{0}\:\mathrm{g}.\mathrm{L}^{−\mathrm{1}} ,\:\mathrm{however},\:\mathrm{ethanol}\:\mathrm{and} \\ $$$$\mathrm{water}\:\mathrm{are}\:\mathrm{miscible}. \\ $$$$\: \\ $$$$\:\:\:\mathrm{Given}\:\mathrm{that}\:: \\ $$$$\bullet\:\:\:\:\:\mathrm{Ethanol}\::\:\mathrm{H}_{\mathrm{3}} \mathrm{C}−\mathrm{C}−\mathrm{O} \\ $$$$\bullet\:\:\:\:\:\mathrm{Methoxymethane}\::\:\mathrm{H}_{\mathrm{3}} \mathrm{C}−\mathrm{O}−\mathrm{CH}_{\mathrm{3}}…

Given-4-2-1-1-2-is-a-geometric-progression-Find-the-sum-of-n-2-terms-of-this-progression-in-terms-of-n-

Question Number 122391 by ZiYangLee last updated on 16/Nov/20 $$\mathrm{Given}\:\mathrm{4},\mathrm{2},\mathrm{1},\frac{\mathrm{1}}{\mathrm{2}},\ldots\:\mathrm{is}\:\mathrm{a}\:\mathrm{geometric}\:\mathrm{progression}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\left({n}+\mathrm{2}\right)\mathrm{terms}\:\mathrm{of}\:\mathrm{this}\:\mathrm{progression} \\ $$$$\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n}. \\ $$ Answered by floor(10²Eta[1]) last updated on 16/Nov/20 $$\mathrm{GP}\left(\mathrm{4},\:\mathrm{2},\:\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{2}},\:…\right),\:\mathrm{q}=\frac{\mathrm{1}}{\mathrm{2}} \\…

y-x-2-17x-56-x-2-y-min-

Question Number 122379 by bounhome last updated on 16/Nov/20 $${y}=\frac{{x}^{\mathrm{2}} +\mathrm{17}{x}−\mathrm{56}}{{x}−\mathrm{2}} \\ $$$${y}_{{min}} =…? \\ $$ Answered by MJS_new last updated on 16/Nov/20 $${y}'=\frac{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{22}}{\left({x}−\mathrm{2}\right)^{\mathrm{2}}…