Question Number 187730 by otchereabdullai last updated on 20/Feb/23 $$\:{Evaluate}\: \\ $$$${lim}\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)\:\frac{{x}^{\mathrm{2}} \left({y}−\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Answered by mr W last updated on…
Question Number 56650 by naka3546 last updated on 20/Mar/19 $${ABCDEF}\:\:{is}\:\:{prime}\:\:{number}\:\:{which}\:\:{consist}\:\:{of}\:\:{six}\:\:{digits}\:. \\ $$$${CD},\:{DE},\:{EF},\:{DEF}\:\:{are}\:\:{prime}\:\:{numbers}\:. \\ $$$${A}\:+\:{B}\:+\:{C}\:+\:{D}\:+\:{E}\:+\:{F}\:\:=\:\:\mathrm{19} \\ $$$${ABC}\:−\:{DEF}\:\:\:{is}\:\:{a}\:\:{prime}\:\:{number}\:. \\ $$$${if}\:\:{ABC}\:+\:{DEF}\:\:=\:\:{x}\:\centerdot\:{y}\:\:\:\:\left(\:\:{x},\:{y}\:\:\:{are}\:\:{prime}\:\:{numbers}\:\:\right)\:. \\ $$$$\mid\:{x}\:−\:{y}\:\mid\:\:=\:\:…\: \\ $$ Terms of Service…
Question Number 56647 by ANTARES VY last updated on 20/Mar/19 $$\boldsymbol{\mathrm{sin}}\left(\frac{\boldsymbol{\pi}}{\boldsymbol{\mathrm{x}}}\right)=\mathrm{1} \\ $$$$\boldsymbol{\mathrm{x}}\in\left[\mathrm{0}.\mathrm{05};\mathrm{0}.\mathrm{1}\right] \\ $$ Commented by ajfour last updated on 20/Mar/19 $$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{x}}\right)=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}+\mathrm{2k}\pi\right) \\ $$$$\mathrm{k}\in\left\{\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9}\right\}…
Question Number 187716 by yaslm last updated on 20/Feb/23 Answered by Ar Brandon last updated on 20/Feb/23 $$\Sigma{F}_{{x}} :\:\mathrm{300sin}\beta=\mathrm{200sin}\alpha\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{sin}\beta=\frac{\mathrm{2sin}\alpha}{\mathrm{3}} \\ $$$$\Sigma{F}_{\mathrm{y}} :\:\mathrm{300cos}\beta+\mathrm{200cos}\alpha=\mathrm{400} \\…
Question Number 187714 by 073 last updated on 20/Feb/23 Commented by 073 last updated on 20/Feb/23 $$\mathrm{fog}\left(\mathrm{x}\right)=\mathrm{5x}−\mathrm{1} \\ $$$$\mathrm{gof}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{6x}+\mathrm{2} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=? \\ $$$$\mathrm{please}\:\mathrm{solution}?? \\…
Question Number 187711 by otchereabdullai last updated on 20/Feb/23 $$\:{Evaluate}\:\: \\ $$$$\:\:\:{lim}\left({x},{y}\right)\rightarrow\left(\mathrm{1},\mathrm{0}\right)\:\:\frac{{xy}−{y}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 56635 by problem solverd last updated on 19/Mar/19 $$\int\frac{\sqrt{\mathrm{tan}{x}}}{\mathrm{sin}{x}}\mathrm{d}{x} \\ $$ Commented by MJS last updated on 19/Mar/19 $$\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{an}\:\mathrm{elliptic}\:\mathrm{integral}\:\mathrm{which}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{be}\:\mathrm{solved}\:\mathrm{using}\:\mathrm{elementar}\:\mathrm{calculus} \\ $$…
Question Number 122173 by help last updated on 14/Nov/20 Answered by physicstutes last updated on 14/Nov/20 $$\:\mathrm{Centre}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{line}\:{y}\:=\:\mathrm{1}\:\Rightarrow\:{y}−\mathrm{coordinate}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{centre}\:\mathrm{is}\:\mathrm{1}.\: \\ $$$$\mathrm{The}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{is}\:=\:\mathrm{4} \\ $$$$\mathrm{Let}\:\mathrm{the}\:{x}−\mathrm{coordinate}\:\mathrm{of}\:\mathrm{the}\:\mathrm{centre}\:=\:{a} \\ $$$$\mathrm{Then}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{given}\:\mathrm{as}…
Question Number 122162 by naka3546 last updated on 14/Nov/20 $${Find}\:\:{the}\:\:{real}\:\:{solution}\:\:{of}\:\:{equality}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} \:−\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{4}{x}\:−\:\mathrm{1}\:=\:\mathrm{0} \\ $$$${Please}\:\:{show}\:\:{your}\:\:{workings}\:! \\ $$ Answered by mathmax by abdo last updated…
Question Number 122142 by A8;15: last updated on 14/Nov/20 Answered by ebi last updated on 14/Nov/20 $${y}={mx}+{c} \\ $$$${m}=\frac{{N}\Sigma\left({xy}\right)−\Sigma{x}\Sigma{y}}{{N}\Sigma{x}^{\mathrm{2}} −\left(\Sigma{x}\right)^{\mathrm{2}} } \\ $$$${c}=\frac{\Sigma{y}−{m}\Sigma{x}}{{N}} \\ $$$$\begin{vmatrix}{{x}}\\{−\mathrm{1}}\\{\mathrm{0}}\\{\mathrm{1}}\\{\Sigma{x}=\mathrm{0}}\end{vmatrix}\begin{vmatrix}{{y}}\\{\mathrm{3}}\\{\mathrm{2}}\\{\mathrm{4}}\\{\Sigma{y}=\mathrm{9}}\end{vmatrix}\begin{vmatrix}{{x}^{\mathrm{2}}…