Menu Close

Category: None

Ancient-Roman-Number-Magic-take-5-matches-or-picks-and-form-a-roman-3-now-subtract-2-so-that-a-little-more-than-3-is-left-

Question Number 55926 by MJS last updated on 06/Mar/19 $$\mathrm{Ancient}\:\mathrm{Roman}\:\mathrm{Number}\:\mathrm{Magic}: \\ $$$$\mathrm{take}\:\mathrm{5}\:\mathrm{matches}\:\mathrm{or}\:\mathrm{picks}\:\mathrm{and}\:\mathrm{form}\:\mathrm{a}\:\mathrm{roman}\:\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{−} {\overline {\mid\mid\mid}} \\ $$$$\mathrm{now}\:\mathrm{subtract}\:\mathrm{2}\:\mathrm{so}\:\mathrm{that}\:\mathrm{a}\:\mathrm{little}\:\mathrm{more}\:\mathrm{than}\:\mathrm{3}\:\mathrm{is}\:\mathrm{left} \\ $$ Answered by MJS last updated…

Calculate-a-1-b-1-c-1-ab-3a-c-4-a-b-c-a-b-b-c-c-a-

Question Number 55920 by ANTARES VY last updated on 06/Mar/19 $$\boldsymbol{\mathrm{Calculate}}. \\ $$$$\underset{\boldsymbol{{a}}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\boldsymbol{{b}}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\boldsymbol{{c}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{{ab}}\left(\mathrm{3}\boldsymbol{{a}}+\boldsymbol{{c}}\right)}{\mathrm{4}^{\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}} \left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)\left(\boldsymbol{{c}}+\boldsymbol{{a}}\right)}. \\ $$ Commented by mr…

Question-55902

Question Number 55902 by naka3546 last updated on 06/Mar/19 Answered by MJS last updated on 06/Mar/19 $${P}_{{n}} =\left({a}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} +\left({a}+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} ;\:{a}\in\mathbb{Z}^{+} \\ $$$${P}_{\mathrm{1}} =\mathrm{2}{a}+\mathrm{2}\:\in\mathbb{Z} \\ $$$${P}_{\mathrm{2}}…

Question-186960

Question Number 186960 by Humble last updated on 12/Feb/23 Answered by MJS_new last updated on 12/Feb/23 $${z}={x}+{y}\mathrm{i} \\ $$$${z}=\mid{z}\mid\mathrm{e}^{\measuredangle\left({z}\right)} \\ $$$$\:\:\:\:\:\left[\mid{x}+{y}\mathrm{i}\mid=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:\wedge\:\measuredangle\left({x}+{y}\mathrm{i}\right)=\mathrm{arctan}\:\frac{{y}}{{x}}\right] \\ $$$${z}=\sqrt{{x}^{\mathrm{2}}…