Menu Close

Category: None

Question-125673

Question Number 125673 by aurpeyz last updated on 12/Dec/20 Answered by bramlexs22 last updated on 13/Dec/20 $$\left(\mathrm{1}\right){a}+{ar}+{ar}^{\mathrm{2}} \:=\:{p}\:;{a}\left(\mathrm{1}+{r}+{r}^{\mathrm{2}} \right)={p} \\ $$$$\left(\mathrm{2}\right){a}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{4}}…

If-3-x-1-find-the-value-of-x-

Question Number 191203 by otchereabdullai last updated on 20/Apr/23 $$\:{If}\:\:\mathrm{3}^{{x}} =−\mathrm{1}\:{find}\:{the}\:{value}\:{of}\:{x} \\ $$ Answered by Frix last updated on 20/Apr/23 $$\mathrm{3}^{{x}} =−\mathrm{1} \\ $$$$\mathrm{e}^{{x}\mathrm{ln}\:\mathrm{3}} =\mathrm{e}^{\mathrm{i}\left(\mathrm{2}{n}+\mathrm{1}\right)\pi}…

1-6-1-2-6-2-3-6-3-n-6-n-

Question Number 125663 by Mammadli last updated on 12/Dec/20 $$\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{1}} }+\frac{\mathrm{2}}{\mathrm{6}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{6}^{\mathrm{3}} }+…+\frac{{n}}{\mathrm{6}^{{n}} }=? \\ $$ Answered by Dwaipayan Shikari last updated on 12/Dec/20 $${S}=\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{2}}{\mathrm{6}^{\mathrm{2}}…

a-x-b-y-c-z-x-a-y-b-z-c-

Question Number 125661 by Mammadli last updated on 12/Dec/20 $$\boldsymbol{{a}}^{\boldsymbol{{x}}} \:=\:\boldsymbol{{b}}^{\boldsymbol{{y}}} \:=\:\boldsymbol{{c}}^{\boldsymbol{{z}}} \\ $$$$\boldsymbol{{x}}^{\boldsymbol{{a}}} \:+\:\boldsymbol{{y}}^{\boldsymbol{{b}}} \:+\:\boldsymbol{{z}}^{\boldsymbol{{c}}} \:=\:? \\ $$ Terms of Service Privacy Policy Contact:…

1-2020-1-2-2020-2-3-2020-3-n-2020-n-

Question Number 125659 by Mammadli last updated on 12/Dec/20 $$\frac{\mathrm{1}}{\mathrm{2020}^{\mathrm{1}} }+\frac{\mathrm{2}}{\mathrm{2020}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{2020}^{\mathrm{3}} }+…+\frac{\boldsymbol{{n}}}{\mathrm{2020}^{\boldsymbol{{n}}} }=? \\ $$ Answered by Dwaipayan Shikari last updated on 12/Dec/20 $${S}=\frac{\mathrm{1}}{\mathrm{2020}}+\frac{\mathrm{2}}{\mathrm{2020}^{\mathrm{2}}…

Question-125651

Question Number 125651 by Algoritm last updated on 12/Dec/20 Answered by Olaf last updated on 12/Dec/20 $$\begin{cases}{{y}_{\mathrm{1}} '\:=\:{y}_{\mathrm{1}} +\mathrm{4}{y}_{\mathrm{2}} \:\left(\mathrm{1}\right)}\\{{y}_{\mathrm{2}} '\:=\:−{y}_{\mathrm{1}} +{y}_{\mathrm{2}} +{e}^{\mathrm{3}{x}} \:\left(\mathrm{2}\right)}\end{cases} \\…