Menu Close

Category: None

evaluate-C-z-2-sin-z-2z-cos-z-pi-dz-C-2-2-sin-z-2z-cos-z-pi-dz-where-C-is-the-circle-z-3pi-4-pi-4-

Question Number 214340 by issac last updated on 06/Dec/24 $$\mathrm{evaluate} \\ $$$$\frac{\oint_{{C}} \:\frac{{z}}{\mathrm{2}\centerdot\mathrm{sin}\left({z}\right)−\mathrm{2}{z}\centerdot\mathrm{cos}\left({z}\right)−\pi}\mathrm{d}{z}}{\oint_{\:{C}} \:\frac{\mathrm{2}}{\mathrm{2}\centerdot\mathrm{sin}\left({z}\right)−\mathrm{2}{z}\centerdot\mathrm{cos}\left({z}\right)−\pi}\mathrm{d}{z}} \\ $$$$\mathrm{where}\:{C}\:\mathrm{is}\:\mathrm{the}\:\mathrm{circle}\mid{z}−\frac{\mathrm{3}\pi}{\mathrm{4}}\mid=\frac{\pi}{\mathrm{4}}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

dx-3-cosx-

Question Number 214341 by liuxinnan last updated on 06/Dec/24 $$\int\frac{{dx}}{\mathrm{3}+{cosx}}=? \\ $$ Answered by chhaythean last updated on 06/Dec/24 $$\mathrm{let},\:\mathrm{t}\:=\:\mathrm{tan}\frac{{x}}{\mathrm{2}}\:\Rightarrow\:\mathrm{dt}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\mathrm{d}{x} \\ $$$$\mathrm{or}\:\mathrm{dt}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)\mathrm{d}{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\mathrm{d}{x}…

why-differantiable-f-f-is-continious-but-f-is-continous-differantiable-

Question Number 214342 by issac last updated on 06/Dec/24 $$\mathrm{why} \\ $$$$\mathrm{differantiable}\:{f}\:\rightarrow\:{f}\:\mathrm{is}\:\mathrm{continious}\: \\ $$$$\mathrm{but}\:{f}\:\mathrm{is}\:\mathrm{continous}\:\nrightarrow\:\mathrm{differantiable}\:?? \\ $$ Commented by mr W last updated on 06/Dec/24 $${a}\:{smooth}\:{line}\:{is}\:{always}\:{continous},…

15x-6x-10-12x-20-15x-30-60x-100-160-solve-for-x-

Question Number 214321 by MathematicsExpert last updated on 05/Dec/24 $$\mathrm{15}{x}\left(\frac{\mathrm{6}{x}}{\mathrm{10}}+\frac{\mathrm{12}{x}}{\mathrm{20}}+\frac{\mathrm{15}{x}}{\mathrm{30}}+…+\frac{\mathrm{60}{x}}{\mathrm{100}}\right)=\mathrm{160} \\ $$$$\mathrm{solve}\:\mathrm{for}\:{x} \\ $$ Answered by MATHEMATICSAM last updated on 06/Dec/24 $$\mathrm{15}{x}\left(\frac{\mathrm{6}{x}}{\mathrm{10}}\:+\:\frac{\mathrm{12}{x}}{\mathrm{20}}\:+\:\frac{\mathrm{15}{x}}{\mathrm{30}}\:+\:…\:+\:\frac{\mathrm{60}{x}}{\mathrm{100}}\right)\:=\:\mathrm{160} \\ $$$$\Rightarrow\:\mathrm{15}{x}\left(\frac{\mathrm{3}{x}}{\mathrm{5}}\:+\:\frac{\mathrm{3}{x}}{\mathrm{5}}\:+\:\frac{\mathrm{3}{x}}{\mathrm{5}}\:+\:…\:+\:\frac{\mathrm{3}{x}}{\mathrm{5}}\right)\:=\:\mathrm{160} \\…

P-x-x-2-3-mod-5x-1-P-x-x-2-mod-16-P-x-x-2-3-x-2-mod-

Question Number 214293 by muallimRiyoziyot last updated on 04/Dec/24 $${P}\left({x}\right)\:\:\:\:\:\:\vdots\left({x}^{\mathrm{2}} +\mathrm{3}\right)\:\:\:\:\:{mod}\left(\mathrm{5}{x}−\mathrm{1}\right) \\ $$$${P}\left({x}\right)\:\:\:\:\:\:\vdots\left({x}−\mathrm{2}\right)\:\:\:\:\:\:\:\:\:{mod}\left(\mathrm{16}\right) \\ $$$${P}\left({x}\right)\:\:\:\:\:\:\vdots\left({x}^{\mathrm{2}} +\mathrm{3}\right)\left({x}−\mathrm{2}\right)\:\:\:{mod}\left(?\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

evaluate-C-z-2sin-z-2zcos-z-pi-dz-C-2-2sin-z-2zcos-z-pi-dz-C-z-3pi-4-pi-4-

Question Number 214279 by issac last updated on 03/Dec/24 $$\mathrm{evaluate} \\ $$$$\rho=\frac{\oint_{\:\mathcal{C}} \:\frac{{z}}{\mathrm{2sin}\left({z}\right)−\mathrm{2}{z}\mathrm{cos}\left({z}\right)−\pi}\:\mathrm{d}{z}}{\oint_{\:\mathcal{C}} \:\frac{\mathrm{2}}{\mathrm{2sin}\left({z}\right)−\mathrm{2}{z}\mathrm{cos}\left({z}\right)−\pi}\mathrm{d}{z}} \\ $$$$\mathcal{C}=\mid{z}−\frac{\mathrm{3}\pi}{\mathrm{4}}\mid=\frac{\pi}{\mathrm{4}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-214251

Question Number 214251 by Hanuda354 last updated on 02/Dec/24 Commented by Hanuda354 last updated on 02/Dec/24 $$\mathrm{Determine}\:\:\mathrm{where}\:\:{f}\:\:\mathrm{is}\:\:\mathrm{continuous}\:\:\mathrm{algebraically}. \\ $$$$\mathrm{Write}\:\:\mathrm{in}\:\:\mathrm{interval}\:\:\mathrm{notation}. \\ $$ Answered by a.lgnaoui last…

lim-x-1-arctan-2-1-x-1-Calculons-la-limite-a-l-intrieur-2-1-x-1-0-lim-x-1-arctan-2-1-x-1-arctan-0-0-lim-x-1-arctan-2-1-x-1-0-lim-x-1-

Question Number 214256 by Einstein2006 last updated on 02/Dec/24 $$\boldsymbol{{lim}}_{\boldsymbol{{x}}\:\rightarrow\:\mathrm{1}} \propto.\boldsymbol{{arctan}}\left(\frac{\mathrm{2}}{\mathrm{1}\:+\boldsymbol{{x}}}\:−\:\mathrm{1}\right) \\ $$$$\bullet\:\boldsymbol{{Calculons}}\:\boldsymbol{{la}}\:\boldsymbol{{limite}}\:\boldsymbol{{a}}\:\boldsymbol{{l}}'\boldsymbol{{intrieur}}: \\ $$$$\frac{\mathrm{2}}{\mathrm{1}\:+\:\boldsymbol{{x}}}\:−\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\: \\ $$$$\boldsymbol{{lim}}_{\boldsymbol{{x}}\:\rightarrow\:\mathrm{1}} {arctan}\left(\frac{\mathrm{2}}{\mathrm{1}\:+\:{x}}\:−\:\mathrm{1}\right)=\:\boldsymbol{{arctan}}\left(\mathrm{0}\right)\:=\:\mathrm{0} \\ $$$$\: \\ $$$$\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{1}} \propto.{arctan}\left(\frac{\mathrm{2}}{\mathrm{1}+\:{x}}\:−\:\mathrm{1}\right)\:=\propto.\mathrm{0}\:…