Question Number 121683 by arkanmath7@gmail.com last updated on 10/Nov/20 $${Find}\:{a}\:{sequence}\:{of}\:{successive} \\ $$$$\:{approximations}\:{for}\:{the}\:{problem} \\ $$$${y}^{\:''} \:=\:{x}\:−\:{y}\:,\:\:\:\:{y}\left({o}\right)=\mathrm{1}\:,\:{y}^{\:'\:} \left(\mathrm{0}\right)=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 187215 by Humble last updated on 14/Feb/23 $$\frac{\sqrt{{n}!}}{{n}}=\sqrt{\mathrm{20}}\:;\:{n}=? \\ $$ Answered by ajfour last updated on 14/Feb/23 $$\frac{{n}!}{{n}^{\mathrm{2}} }=\mathrm{20} \\ $$$$\left({n}−\mathrm{1}\right)!=\mathrm{20}\left({n}−\mathrm{1}\right)+\mathrm{20} \\ $$$$\left({n}−\mathrm{2}\right)!=\mathrm{20}+\frac{\mathrm{20}}{{n}−\mathrm{1}}…
Question Number 187191 by 073 last updated on 14/Feb/23 Commented by Rasheed.Sindhi last updated on 14/Feb/23 $${You}\:{don}'{t}\:{deserve}\:{solution}\:{because} \\ $$$${you}\:{don}'{t}\:{give}\:{any}\:{feedback}. \\ $$ Commented by 073 last…
Question Number 187190 by 073 last updated on 14/Feb/23 Answered by aba last updated on 14/Feb/23 $$\mathrm{x}\Delta\mathrm{e}=\mathrm{x}\Rightarrow−\mathrm{3x}×\mathrm{e}−\mathrm{3x}−\mathrm{3e}−\mathrm{4}=\mathrm{x} \\ $$$$\Rightarrow−\mathrm{3e}\left(\mathrm{x}+\mathrm{1}\right)=\mathrm{4}\left(\mathrm{x}+\mathrm{1}\right)\Rightarrow\:\mathrm{e}=−\frac{\mathrm{4}}{\mathrm{3}} \\ $$ Commented by 073 last…
Question Number 187186 by 073 last updated on 14/Feb/23 Commented by 073 last updated on 14/Feb/23 $$\mathrm{please}\:\mathrm{solution}?? \\ $$ Commented by Rasheed.Sindhi last updated on…
Question Number 187177 by Humble last updated on 14/Feb/23 $$ \\ $$$$\mathrm{2}^{{y}} {y}^{\mathrm{2}} +\left(\mathrm{2}{y}\right)^{\left(\mathrm{2}{y}\right)} =\mathrm{272} \\ $$ Answered by Frix last updated on 14/Feb/23 $$\mathrm{2}^{{y}}…
Question Number 56104 by problem solverd last updated on 10/Mar/19 $$\left(\frac{\mathrm{1}}{\mathrm{27}}\right)^{\mathrm{z}} +\mathrm{9}^{\mathrm{z}} .\mathrm{9}=\frac{\mathrm{1}}{\mathrm{3}^{−\mathrm{4}} } \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{z} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 10/Mar/19…
Question Number 56075 by Kunal12588 last updated on 10/Mar/19 $${Prove}\:{that}\:{If}\:{a}\:{set}\:{consist}\:{of}\:{n}\:{number}\:{of} \\ $$$${terms}\:{then}\:{its}\:{Power}\:{Set}\:{would}\:{contain} \\ $$$$\mathrm{2}^{{n}} \:{number}\:{of}\:{terms}. \\ $$$$\left[{Use}\:{formulas}\:{of}\:{sequence}\:{and}\:{series}\right] \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on…
Question Number 121612 by Khalmohmmad last updated on 10/Nov/20 Commented by MJS_new last updated on 10/Nov/20 $$\mathrm{the}\:\mathrm{problem}\:\mathrm{why}\:\mathrm{you}\:\mathrm{got}\:\mathrm{no}\:\mathrm{answer}\:\mathrm{might} \\ $$$$\mathrm{be}\:\mathrm{that}\:\mathrm{nobody}\:\mathrm{knows}\:\mathrm{what}\:“\mathrm{the}\:\left({a}_{\mathrm{4}} =?\right)'' \\ $$$$\mathrm{means}.\:\mathrm{your}\:\mathrm{question}\:\mathrm{is}\:\mathrm{like}\:\mathrm{this}\:\mathrm{one}: \\ $$$${the}\:{ship}\:{is}\:\mathrm{25}{m}\:{long}.\:{how}\:{old}\:{is}\:{Peter}? \\…
Question Number 121608 by naka3546 last updated on 10/Nov/20 $$\left(\mathrm{6}^{\mathrm{2020}} \:+\:\mathrm{8}^{\mathrm{2020}} \right)\:{mod}\:\mathrm{49}\:\:? \\ $$$${Show}\:\:{your}\:\:{elegant}\:\:{workings}\:,\:{please}. \\ $$$${Thanks}\:\:{a}\:{lot}. \\ $$ Answered by mr W last updated on…