Menu Close

Category: None

In-a-sequence-if-r-th-term-is-given-by-T-r-2-T-r-1-1-then-give-it-s-n-th-term-in-terms-of-it-s-1-st-term-Given-T-1-2-

Question Number 56074 by Kunal12588 last updated on 10/Mar/19 $${In}\:{a}\:{sequence}\:{if}\:{r}^{{th}} \:{term}\:{is}\:{given}\:{by} \\ $$$${T}_{{r}} =\mathrm{2}×{T}_{{r}−\mathrm{1}} +\mathrm{1} \\ $$$${then}\:{give}\:{it}'{s}\:{n}^{{th}} \:{term}\:{in}\:{terms}\:{of}\:\:{it}'{s}\:\mathrm{1}^{{st}} \:{term} \\ $$$$\left[{Given}\::\:\:\:\:\:{T}_{\mathrm{1}} =\mathrm{2}\right] \\ $$ Commented…

0-1-x-17-1-x-19-1-dx-

Question Number 56053 by naka3546 last updated on 09/Mar/19 $$\underset{\mathrm{0}} {\int}\overset{\mathrm{1}} {\:}\:\:\frac{{x}^{\mathrm{17}} \:−\:\mathrm{1}}{{x}^{\mathrm{19}} \:−\:\mathrm{1}}\:\:{dx}\:\:=\:\:? \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 10/Mar/19 Terms of…

Question-121587

Question Number 121587 by Maclaurin Stickker last updated on 09/Nov/20 Commented by Maclaurin Stickker last updated on 09/Nov/20 $${O}_{\mathrm{2}} ,\:{O}_{\mathrm{1}} \:{and}\:{O}\:{are}\:{centers}\:{of}\:{circles}.\: \\ $$$${B}\:{and}\:{O}_{\mathrm{2}} \:{are}\:{tangency}\:{points}. \\…

prove-to-0-0-2-

Question Number 187088 by mustafazaheen last updated on 13/Feb/23 $$\mathrm{prove}\:\mathrm{to}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{2} \\ $$ Commented by Frix last updated on 13/Feb/23 $$\frac{\mathrm{0}}{\mathrm{0}}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\Rightarrow\:\mathrm{no}\:\mathrm{proof}\:\mathrm{possible}. \\ $$$${f}\left({r}\right)=\mathrm{0}\wedge{g}\left({r}\right)=\mathrm{0}:\:\underset{{x}\rightarrow{r}} {\mathrm{lim}}\:\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}\:={L} \\ $$$${L}\:\mathrm{can}\:\mathrm{be}\:\mathrm{undefined}\:\mathrm{or}\:\mathrm{have}\:\mathrm{any}\:\mathrm{value}…

a-x-b-y-c-z-1-3-a-2b-c-2-and-2y-3z-1-x-how-is-solution-this-qution-solve-by-the-Properties-of-proportion-

Question Number 187087 by mustafazaheen last updated on 13/Feb/23 $$ \\ $$$$\frac{{a}}{{x}}=\frac{{b}}{{y}}=\frac{{c}}{{z}}=\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\:,{a}−\mathrm{2}{b}+{c}=\mathrm{2}\:\:{and}\:\:\mathrm{2}{y}−\mathrm{3}{z}=\mathrm{1}\:\:\:\:{x}=? \\ $$$${how}\:{is}\:{solution} \\ $$$$\:{this}\:{qution}\:{solve}\:{by}\:{the}\:\mathrm{Properties}\:\mathrm{of}\:\mathrm{proportion} \\ $$$$ \\ $$$$ \\ $$ Commented by mr…

a-b-b-a-5-a-2-b-b-2-a-12-1-a-1-b-

Question Number 187076 by Humble last updated on 13/Feb/23 $$\frac{{a}}{{b}}+\frac{{b}}{{a}}=\mathrm{5}\:\:;\:\frac{{a}^{\mathrm{2}} }{{b}}+\frac{{b}^{\mathrm{2}} }{{a}}\:=\mathrm{12} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=? \\ $$ Answered by Rasheed.Sindhi last updated on 13/Feb/23 $$\frac{{a}}{{b}}+\frac{{b}}{{a}}=\mathrm{5}\:\:;\:\frac{{a}^{\mathrm{2}} }{{b}}+\frac{{b}^{\mathrm{2}}…