Menu Close

Category: None

let-x-be-the-Discrete-random-variable-with-PGF-P-x-t-t-5-2-3t-2-find-the-distribution-of-x-

Question Number 187072 by Humble last updated on 13/Feb/23 $${let}\:{x}\:{be}\:{the}\:{Discrete}\:{random}\:{variable}\:{with}\:\left({PGF}\right)\: \\ $$$${P}_{{x}} \left({t}\right)\:=\:\frac{{t}}{\mathrm{5}}\left(\mathrm{2}+\mathrm{3}{t}^{\mathrm{2}} \right) \\ $$$${find}\:{the}\:{distribution}\:{of}\:{x} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-187051

Question Number 187051 by pascal889 last updated on 13/Feb/23 Commented by mr W last updated on 13/Feb/23 $$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1000}}\right)^{\mathrm{8}} =\underset{{n}=\mathrm{0}} {\overset{\mathrm{8}} {\sum}}\frac{{C}_{{n}} ^{\mathrm{8}} }{\mathrm{10}^{\mathrm{3}{n}} } \\…

find-the-general-solution-for-the-following-system-of-equations-dx-1-dt-2x-1-2x-2-dx-2-dt-x-1-3x-2-

Question Number 187046 by Humble last updated on 12/Feb/23 $${find}\:\:\:{the}\:{general}\:\:{solution}\:{for}\:\:{the}\:{following} \\ $$$${system}\:{of}\:{equations} \\ $$$$\left(\frac{{dx}_{\mathrm{1}} }{{dt}}\right)=\mathrm{2}{x}_{\mathrm{1}} +\mathrm{2}{x}_{\mathrm{2}} \\ $$$$\left(\frac{{dx}_{\mathrm{2}} }{{dt}}\right)={x}_{\mathrm{1}} +\mathrm{3}{x}_{\mathrm{2}} \\ $$$$ \\ $$ Answered…

f-x-y-x-y-0-lt-x-lt-1-0-lt-y-lt-1-0-otherwise-find-1-xy-2-p-0-lt-x-lt-1-4-2-5-gt-y-gt-1-3-note-f-x-y-is-the-joint-PDF-

Question Number 187044 by Humble last updated on 12/Feb/23 $${f}\left({x},{y}\right)=\left\{\left({x}+{y}\right),\mathrm{0}<{x}<\mathrm{1},\:\mathrm{0}<{y}<\mathrm{1}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0},\:{otherwise} \\ $$$${find}: \\ $$$$\left(\mathrm{1}\right)\:\sigma{xy} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\:{p}\left(\mathrm{0}<{x}<\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\mid\left(\frac{\mathrm{2}}{\mathrm{5}}\right)>{y}>\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right) \\ $$$$ \\ $$$${note}:\:{f}\left({x},{y}\right)\:{is}\:{the}\:{joint}\:{PDF} \\…

Question-187029

Question Number 187029 by yaslm last updated on 12/Feb/23 Answered by cortano12 last updated on 12/Feb/23 $$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow−\mathrm{2}^{−} } {\mathrm{lim}}\:\left({ax}+{b}\right)=\:\underset{{x}\rightarrow−\mathrm{2}^{+} } {\mathrm{lim}}\left({x}^{\mathrm{2}} +\mathrm{2}{b}−\mathrm{17}\right) \\ $$$$\:\:\:\:\:\:\:−\mathrm{2}{a}+{b}\:=\:\mathrm{4}+\mathrm{2}{b}−\mathrm{17} \\…