Menu Close

Category: None

Question-186901

Question Number 186901 by Beginner last updated on 11/Feb/23 Answered by Frix last updated on 12/Feb/23 $$\mathrm{The}\:\mathrm{chance}\:\mathrm{for}\:\mathrm{the}\:\mathrm{jackpot}\:\mathrm{is} \\ $$$${P}=\frac{\mathrm{1}}{{C}_{\mathrm{7}} ^{\mathrm{40}} }=\frac{\mathrm{1}}{\mathrm{18}\:\mathrm{643}\:\mathrm{560}} \\ $$$$\mathrm{The}\:\mathrm{chance}\:\mathrm{to}\:{not}\:\mathrm{win}\:\mathrm{in}\:{n}\:\mathrm{games}\:\mathrm{is} \\ $$$$\left(\mathrm{1}−{P}\right)^{{n}}…

find-grad-log-r-

Question Number 55816 by Rio Mike last updated on 04/Mar/19 $${find}\:{grad}\:{log}\:\mid\boldsymbol{{r}}\mid \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19 $${grade}\:{ln}\mid{r}\mid \\ $$$$\overset{\rightarrow} {\bigtriangledown}=\left({i}\frac{\partial}{{dx}}+{j}\frac{\partial}{\partial{y}}+{k}\frac{\partial}{\partial{z}}\right)\left({ln}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}}…

prove-that-n-1-n-4-n-7-1-3-2-n-2cos-n-2-pi-3-

Question Number 121339 by Eric002 last updated on 06/Nov/20 $${prove}\:{that} \\ $$$$\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{4}}\end{pmatrix}+\begin{pmatrix}{{n}}\\{\mathrm{7}}\end{pmatrix}+….=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}^{{n}} +\mathrm{2}{cos}\frac{\left({n}−\mathrm{2}\right)\pi}{\mathrm{3}}\right)\: \\ $$ Answered by mindispower last updated on 06/Nov/20 $${whst}\:{is}\: \\ $$$${the}\:{logique}…

lim-k-i-1-k-1-ki-

Question Number 186853 by liuxinnan last updated on 11/Feb/23 $${lim}\left({k}\rightarrow\infty\right)\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{ki}}}=? \\ $$ Answered by Ar Brandon last updated on 11/Feb/23 $$\mathscr{L}=\underset{{k}\rightarrow\infty} {\mathrm{lim}}\underset{{i}=\mathrm{1}} {\overset{{k}}…

Discuss-according-to-the-value-of-the-parametre-R-the-convergence-of-the-improper-integral-0-x-ln-x-e-x-dx-

Question Number 186858 by aba last updated on 11/Feb/23 $${Discuss}\:{according}\:{to}\:{the}\:{value}\:{of}\:{the}\:{parametre} \\ $$$$\alpha\in\mathbb{R}\:{the}\:{convergence}\:{of}\:{the}\:{improper}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{+\infty} {x}^{\alpha} {ln}\left({x}+{e}^{\alpha{x}} \right){dx} \\ $$ Terms of Service Privacy Policy…

Question-186849

Question Number 186849 by Beginner last updated on 11/Feb/23 Commented by Beginner last updated on 11/Feb/23 $${i}\:{am}\:{getting}\:\mathrm{82}.\mathrm{4\%}\:{here}\:{and}\:{it}\:{is}\:{wrong}.\:{Can}\:{someone}\:{please}\:{check} \\ $$ Terms of Service Privacy Policy Contact:…