Menu Close

Category: None

0-J-r-e-rt-dr-h-1-z-h-z-h-1-J-r-e-rt-dr-z-j-is-point-of-J-z-0-z-1-0-h-1-F-r-t-r-z-h-r-z-h-1-i-can-t-solve-anymore-

Question Number 220015 by SdC355 last updated on 04/May/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\mid\mid{J}_{\nu} \left({r}\right)\mid\mid{e}^{−{rt}} \:\mathrm{d}{r}=\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\int_{{z}_{{h}} } ^{\:{z}_{{h}+\mathrm{1}} } \:{J}_{\nu} \left({r}\right){e}^{−{rt}} \mathrm{d}{r} \\ $$$${z}_{{j}} \:\mathrm{is}\:\mathrm{point}\:\mathrm{of}\:\:{J}_{\nu}…

evaluate-csc-pis-ipi-C-t-s-1-e-t-dt-path-C-1-s-2pii-C-t-s-1-e-t-1-dt-path-C-

Question Number 220066 by SdC355 last updated on 04/May/25 $$\mathrm{evaluate} \\ $$$$−\frac{\mathrm{csc}\left(\pi{s}\right)}{\boldsymbol{{i}}\pi}\int_{\:\boldsymbol{\mathcal{C}}} \:\left(−{t}\right)^{{s}−\mathrm{1}} {e}^{−{t}} \:\mathrm{d}{t}\:,\:\mathrm{path}\:\boldsymbol{\mathcal{C}};\left(−\infty,\infty\right) \\ $$$$−\frac{\boldsymbol{\Gamma}\left(\mathrm{1}−{s}\right)}{\mathrm{2}\pi\boldsymbol{{i}}}\:\int_{\:\boldsymbol{\mathcal{C}}} \:\frac{\left(−{t}\right)^{{s}−\mathrm{1}} }{{e}^{{t}} −\mathrm{1}}\:\mathrm{d}{t}\:,\:\mathrm{path}\:\boldsymbol{\mathcal{C}};\left(−\infty,\infty\right) \\ $$ Terms of Service…

Solve-Equation-dx-t-dt-2x-t-y-t-dy-t-dt-3y-t-x-1-t-y-1-t-2-1-0-3-x-t-y-t-A-2-1-0-3-det-A-E-0-det-2-1-

Question Number 219996 by SdC355 last updated on 04/May/25 $$\mathrm{Solve}\:\mathrm{Equation} \\ $$$$\frac{\mathrm{d}{x}\left({t}\right)}{\mathrm{d}{t}}=\mathrm{2}{x}\left({t}\right)+{y}\left({t}\right) \\ $$$$\frac{\mathrm{d}{y}\left({t}\right)}{\mathrm{d}{t}}=−\mathrm{3}{y}\left({t}\right) \\ $$$$\begin{pmatrix}{{x}^{\left(\mathrm{1}\right)} \left({t}\right)}\\{{y}^{\left(\mathrm{1}\right)} \left({t}\right)}\end{pmatrix}=\begin{pmatrix}{\mathrm{2}}&{\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{3}}\end{pmatrix}\begin{pmatrix}{{x}\left({t}\right)}\\{{y}\left({t}\right)}\end{pmatrix} \\ $$$$\mathrm{A}=\begin{pmatrix}{\mathrm{2}}&{\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{3}}\end{pmatrix} \\ $$$$\mathrm{det}\left\{\mathrm{A}−\boldsymbol{\lambda}\mathrm{E}\right\}=\mathrm{0} \\ $$$$\mathrm{det}\left\{\begin{pmatrix}{\mathrm{2}}&{\:\:\:\:\mathrm{1}}\\{\mathrm{0}}&{−\mathrm{3}}\end{pmatrix}−\begin{pmatrix}{\boldsymbol{\lambda}}&{\mathrm{0}}\\{\mathrm{0}}&{\boldsymbol{\lambda}}\end{pmatrix}\right\}=\mathrm{0} \\…

what-is-lim-n-1-1-n-a-m-a-a-a-a-m-times-aka-Knuth-s-up-notation-

Question Number 219887 by SdC355 last updated on 03/May/25 $$\mathrm{what}\:\mathrm{is}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\uparrow\uparrow^{\infty} =?? \\ $$$${a}\uparrow\uparrow^{{m}} =\underset{{m}\:\mathrm{times}} {\underbrace{{a}^{{a}^{{a}^{{a}^{\iddots} } } } }}\:\:\left(\mathrm{aka}\:\mathrm{Knuth}'\mathrm{s}\:\mathrm{up}\:\mathrm{notation}\right) \\ $$ Answered…

prove-Y-3-2-z-dz-4sin-z-z-1-2-iz-iz-z-1-2-iz-iz-2piz-C-

Question Number 219872 by SdC355 last updated on 03/May/25 $$\mathrm{prove} \\ $$$$\int\:\:{Y}_{−\frac{\mathrm{3}}{\mathrm{2}}} \left({z}\right)\:\mathrm{d}{z}=\frac{\mathrm{4sin}\left({z}\right)+\frac{{z}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}},−\boldsymbol{{i}}{z}\right)}{\:\sqrt{−\boldsymbol{{i}}{z}}}+\frac{{z}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}},\boldsymbol{{i}}{z}\right)}{\:\sqrt{\boldsymbol{{i}}{z}}}}{\:\sqrt{\mathrm{2}\pi{z}}}+{C} \\ $$ Answered by MrGaster last updated on 03/May/25 $${Y}_{−\nu} =\left(−\mathrm{1}\right)^{\nu} {Y}_{\nu}…

prove-lim-h-0-g-z-h-g-z-1-h-e-d-dz-ln-g-z-e-g-1-z-g-z-

Question Number 219831 by SdC355 last updated on 02/May/25 $$\mathrm{prove} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{g}\left({z}+{h}\right)}{\mathrm{g}\left({z}\right)}\right)^{\frac{\mathrm{1}}{{h}}} ={e}^{\frac{\mathrm{d}\:\:}{\mathrm{d}{z}}\:\mathrm{ln}\:\left(\mathrm{g}\left({z}\right)\right)} ={e}^{\frac{\mathrm{g}^{\left(\mathrm{1}\right)} \left({z}\right)}{\mathrm{g}\left({z}\right)}} \\ $$ Answered by MrGaster last updated on 04/May/25…

lim-h-0-cos-x-h-cos-x-1-h-

Question Number 219806 by SdC355 last updated on 02/May/25 $$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left(\frac{\mathrm{cos}\left({x}+{h}\right)}{\mathrm{cos}\left({x}\right)}\right)^{\frac{\mathrm{1}}{{h}}} =?? \\ $$ Answered by fantastic last updated on 02/May/25 $${cos}\left({y}\right)^{\underset{{y}} {\mathrm{1}}} \\ $$…