Menu Close

Category: None

Question-190564

Question Number 190564 by Best1 last updated on 06/Apr/23 Answered by a.lgnaoui last updated on 06/Apr/23 $$\bullet\mathrm{1}\boldsymbol{{a}}\:\:\:\:{perimetere}\left(\boldsymbol{{p}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\:\left(\mathrm{2},\mathrm{8}×\mathrm{2}\right)+\mathrm{1},\mathrm{6}\right]+\frac{\mathrm{1},\mathrm{6}×\pi}{\mathrm{2}} \\ $$$$\:\:\:=\mathrm{7},\mathrm{1}+\frac{\mathrm{4}\pi}{\mathrm{5}}\Rightarrow\:\:\:\:\boldsymbol{{p}}=\mathrm{9},\mathrm{61}{m} \\ $$$$\:\bullet\mathrm{2}\boldsymbol{{a}}\:\:\:\:\boldsymbol{{A}}{rea}\: \\ $$$$\:=\left(\mathrm{2},\mathrm{8}×\mathrm{1},\mathrm{6}\:\right)\:\:+\pi\left(\mathrm{0},\mathrm{8}\right)^{\mathrm{2}}…

Question-125028

Question Number 125028 by ngahcedric last updated on 07/Dec/20 Answered by Dwaipayan Shikari last updated on 07/Dec/20 $$\int_{\mathrm{0}} ^{\mathrm{4}} {x}^{{n}} \left(\mathrm{16}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{4}{t} \\ $$$$=\mathrm{4}\int_{\mathrm{0}}…

Question-190557

Question Number 190557 by Best1 last updated on 05/Apr/23 Answered by a.lgnaoui last updated on 06/Apr/23 $$\left.\bullet{a}\right)\mathrm{80}=\mathrm{2}{x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow{x}=\mathrm{40} \\ $$$$\left.\bullet{b}\right){x}=\mathrm{2}\left(\mathrm{180}−\mathrm{140}\right)\:\Rightarrow\:{x}=\mathrm{80} \\ $$$$\left.\bullet{c}\right){triangle}\:{rectangle}\Rightarrow{x}=\mathrm{90} \\ $$$$\left.\bullet{d}\right)\:\:\:\:\:\alpha+\beta+\mathrm{130}=\mathrm{360}\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}+\mathrm{130}=\alpha+\beta\:\:\:\:\:\left(\mathrm{2}\right)…

Question-190563

Question Number 190563 by Best1 last updated on 06/Apr/23 Answered by a.lgnaoui last updated on 06/Apr/23 $$\left.\bullet\mathrm{1}{a}\right)\measuredangle{x}\:{et}\:\measuredangle\mathrm{72}\:\:{interceptent}\:{le} \\ $$$$\:\:\:\:{meme}\:{arc}\:\:;\:{alors} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{{x}}=\mathrm{72}\right] \\ $$$$\bullet\mathrm{1}{b}\:\:{x}=\mathrm{2}{y}=\mathrm{2}×\mathrm{33} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\:\boldsymbol{{x}}=\mathrm{66}\right]…

prove-that-1-3-1-4-1-127-1-128-gt-1-

Question Number 125006 by Mammadli last updated on 07/Dec/20 $$\boldsymbol{{prove}}\:\boldsymbol{{that}}: \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{127}}+\frac{\mathrm{1}}{\mathrm{128}}>\mathrm{1} \\ $$ Commented by mr W last updated on 07/Dec/20 $${that}'{s}\:{too}\:{easy}. \\ $$$${try}\:{to}\:{prove}…

Question-190537

Question Number 190537 by Skabetix last updated on 05/Apr/23 Answered by Peace last updated on 05/Apr/23 $${e}^{{u}} =\mathrm{1}+{u}+\frac{{u}^{\mathrm{2}} }{\mathrm{2}}+{o}\left({u}^{\mathrm{2}} \right) \\ $$$${a}\left({u}\right)=\mid\mathrm{1}+\frac{{u}}{\mathrm{2}}−\mathrm{1}+{o}\left({u}\right)\mid\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{u}\left({x}\right)=\mathrm{0} \\ $$$$\Rightarrow\forall\epsilon>\mathrm{0}\:\:\exists\eta\geqslant\mathrm{0},\forall\mid{u}\mid<\eta\:\:\:\Rightarrow\mid\alpha\left({u}\right)\mid<\epsilon\:…

Question-124978

Question Number 124978 by rydasss last updated on 07/Dec/20 Answered by talminator2856791 last updated on 07/Dec/20 $$\:\:\mathrm{1000}{a}\:+\:\mathrm{100}{b}\:+\:\mathrm{10}{c}\:+\:{d}+\:{a}\:+\:{b}\:+\:{c}\:+\:{d}\:+\:{x}\:=\:\mathrm{2013},\:\: \\ $$$$\:{x}\:=\:{S}\left({S}\left(\mathrm{1000}{a}\:+\:\mathrm{100}{b}\:+\:\mathrm{10}{c}\:+\:{d}\right)\right) \\ $$$$\:\mathrm{1001}{a}\:+\:\mathrm{101}{b}\:+\:\mathrm{11}{c}\:+\:\mathrm{2}{d}\:+\:{x}\:=\:\mathrm{2013} \\ $$$$\:{a}\:=\:\mathrm{1} \\ $$$$\:\mathrm{101}{b}\:+\:\mathrm{11}{c}\:+\:\mathrm{2}{d}\:+\:{x}\:=\:\mathrm{1012}…

Question-190512

Question Number 190512 by 073 last updated on 04/Apr/23 Answered by som(math1967) last updated on 04/Apr/23 $$\:^{\mathrm{3}} \sqrt{\sqrt{\mathrm{15}}+\frac{\mathrm{196}}{\mathrm{54}}} \\ $$$$=\:^{\mathrm{3}} \sqrt{\sqrt{\mathrm{15}}+\frac{\mathrm{98}}{\mathrm{27}}} \\ $$$$=^{\mathrm{3}} \sqrt{\frac{\mathrm{27}\sqrt{\mathrm{15}}+\mathrm{98}}{\mathrm{27}}} \\…