Menu Close

Category: None

Determinate-m-such-that-m-is-written-abcca-in-base-5-and-is-written-bbab-in-base-8-

Question Number 124694 by mathocean1 last updated on 05/Dec/20 $${Determinate}\:{m}\:{such}\:{that} \\ $$$${m}\:{is}\:{written}\:{abcca}\:{in}\:{base}\:\mathrm{5}\:{and}\:{is} \\ $$$${written}\:{bbab}\:{in}\:{base}\:\mathrm{8}. \\ $$ Answered by floor(10²Eta[1]) last updated on 05/Dec/20 $$\mathrm{M}=\mathrm{abcca}_{\mathrm{5}} =\mathrm{bbab}_{\mathrm{8}}…

Demonstrate-that-a-b-N-if-a-b-can-not-be-simplified-then-a-b-a-2-ab-b-2-can-not-also-be-simplified-

Question Number 124693 by mathocean1 last updated on 05/Dec/20 $${Demonstrate}\:{that}\:\forall\:{a},{b}\:\in\mathbb{N}^{\ast} \:{if}\:\frac{{a}}{{b}} \\ $$$${can}\:{not}\:{be}\:{simplified},\:{then}\:\frac{{a}+{b}}{{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} } \\ $$$${can}\:{not}\:{also}\:{be}\:{simplified}. \\ $$$$ \\ $$ Answered by MJS_new last…

Question-190230

Question Number 190230 by 073 last updated on 29/Mar/23 Answered by Rasheed.Sindhi last updated on 29/Mar/23 $$\mathrm{a}_{\mathrm{5}} =\mathrm{5}−\mathrm{1}=\mathrm{4}\:\:\:\left[\:\because\:\:\mathrm{5}=\mathrm{2}\left(\mathrm{2}\right)+\mathrm{1}\:\right] \\ $$$$\mathrm{a}_{\mathrm{6}} =\mathrm{2}\left(\mathrm{6}\right)+\mathrm{3}=\mathrm{15}\:\:\:\left[\:\because\:\mathrm{6}=\mathrm{2}\left(\mathrm{3}\right)\:\right] \\ $$$$\mathrm{a}_{\mathrm{5}} +\mathrm{a}_{\mathrm{6}} =\mathrm{4}+\mathrm{15}=\mathrm{19}…

Solve-in-N-2-a-a-2-b-2-4704-GCD-a-b-7-b-13GCD-a-b-2SCM-a-b-4-3-lt-GCD-a-b-lt-7-GCD-greatest-common-divisor-SCM-smallest-common-multiple-

Question Number 124688 by mathocean1 last updated on 05/Dec/20 $${Solve}\:{in}\:\mathbb{N}^{\mathrm{2}} : \\ $$$${a}.\:\:\begin{cases}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{4704}}\\{{GCD}\left({a};{b}\right)=\mathrm{7}}\end{cases} \\ $$$${b}.\:\:\:\begin{cases}{\mathrm{13}{GCD}\left({a};{b}\right)−\mathrm{2}{SCM}\left({a};{b}\right)=\mathrm{4}}\\{\mathrm{3}<{GCD}\left({a};{b}\right)<\mathrm{7}}\end{cases} \\ $$$$ \\ $$$${GCD}:\:{greatest}\:{common}\:{divisor} \\ $$$${SCM}:\:{smallest}\:{common}\:{multiple} \\ $$…

show-that-the-set-of-prime-numbers-is-infinite-

Question Number 124691 by mathocean1 last updated on 05/Dec/20 $${show}\:{that}\:{the}\:{set}\:{of}\:{prime}\:{numbers} \\ $$$${is}\:{infinite} \\ $$ Answered by MJS_new last updated on 05/Dec/20 $$\mathrm{suppose}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{primes}\:\mathrm{is}\:\mathrm{finite}\:\mathrm{and}\:\mathrm{is}\:{n} \\ $$$$\mathrm{let}\:{N}=\mathrm{1}+\underset{{j}=\mathrm{1}} {\overset{{n}}…

solve-in-Z-2-E-3x-y-4-

Question Number 124681 by mathocean1 last updated on 05/Dec/20 $${solve}\:{in}\:\mathbb{Z}^{\mathrm{2}} \:\: \\ $$$$\left({E}\right):\:\mathrm{3}{x}−{y}=\mathrm{4} \\ $$ Answered by Ar Brandon last updated on 05/Dec/20 $$\left(\mathrm{x},\mathrm{y}\right)=\left(\mathrm{2},\mathrm{2}\right) \\…

a-b-c-R-a-b-c-5-Prove-that-a-2-b-2-2b-1-b-2-c-2-2c-1-c-2-a-2-2a-1-29-

Question Number 59131 by naka3546 last updated on 05/May/19 $${a},\:{b},\:{c}\:\:\in\:\:\mathbb{R} \\ $$$${a}\:+\:{b}\:+\:{c}\:\:=\:\:\mathrm{5} \\ $$$${Prove}\:\:{that} \\ $$$$\sqrt{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:−\:\mathrm{2}{b}\:+\:\mathrm{1}}\:\:+\:\:\sqrt{{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:−\:\mathrm{2}{c}\:+\:\mathrm{1}}\:\:+\:\:\sqrt{{c}^{\mathrm{2}} \:+\:{a}^{\mathrm{2}} \:−\:\mathrm{2}{a}\:+\:\mathrm{1}}\:\:\:\geqslant\:\:\sqrt{\mathrm{29}} \\ $$ Answered…