Menu Close

Category: None

Question-55316

Question Number 55316 by Kunal12588 last updated on 21/Feb/19 Commented by Kunal12588 last updated on 21/Feb/19 $${pls}\:{help}\:{me}\:{i}\:{found}\:\mathrm{2519}\:{but}\:{don}'{t}\:{know}\:{is}\:{this}\: \\ $$$${smallest}.\:{also}\:{it}\:{takes}\:\mathrm{2}\:{hrs}\:{for}\:{me} \\ $$$$\:{every}\:{answers}\:{are}\:{welcome} \\ $$ Answered by…

A-mass-of-6kg-lies-on-an-inclined-plane-which-is-smooth-at-angle-to-the-horizontal-where-sin-1-3-if-it-is-connected-to-another-mass-8kg-by-the-same-inelastic-string-passing-over-a-smooth-fixed

Question Number 55306 by Rio Mike last updated on 21/Feb/19 $${A}\:{mass}\:{of}\:\mathrm{6}{kg}\:{lies}\:{on}\:{an}\:{inclined}\:{plane} \\ $$$${which}\:{is}\:{smooth}\:{at}\:{angle}\:\theta\:{to}\:{the}\:{horizontal} \\ $$$${where}\:\:\mathrm{sin}\:\theta=\:\frac{\mathrm{1}}{\mathrm{3}}.{if}\:{it}\:{is}\:{connected}\:{to} \\ $$$${another}\:{mass}\:\mathrm{8}{kg}\:{by}\:{the}\:{same}\:{inelastic}\:{string} \\ $$$${passing}\:{over}\:{a}\:{smooth}\:{fixed}\:{pulley} \\ $$$${at}\:{the}\:{top}\:{of}\:{the}\:{plane}.{the}\:{partices}\:{are} \\ $$$${released}\:{from}\:{rest}\:,{Find}\: \\ $$$$\left.{a}\right)\:{the}\:{acceleration}\:{of}\:{each}\:{mass}…

Question-120827

Question Number 120827 by TITA last updated on 03/Nov/20 Commented by liberty last updated on 03/Nov/20 $$\mathrm{125}×\mathrm{666}×\mathrm{798}×\mathrm{1373}×\mathrm{77777}×\mathrm{111111}\: \\ $$$$\mathrm{7}.\mathrm{882535124571993E20} \\ $$$$ \\ $$ Commented by…

Question-120797

Question Number 120797 by Algoritm last updated on 02/Nov/20 Commented by liberty last updated on 02/Nov/20 $$\begin{cases}{\mathrm{2cos}\:\mathrm{xcos}\:\mathrm{y}=\mathrm{3sin}\:\mathrm{y}}\\{\mathrm{2cos}\:\mathrm{ycos}\:\mathrm{z}=\mathrm{3sin}\:\mathrm{z}}\\{\mathrm{2cos}\:\mathrm{zcos}\:\mathrm{x}=\mathrm{3sin}\:\mathrm{x}}\end{cases}\rightarrow\mathrm{8cos}\:^{\mathrm{2}} \mathrm{xcos}\:^{\mathrm{2}} \mathrm{ycos}\:^{\mathrm{2}} \mathrm{z}=\mathrm{27sin}\:\mathrm{xsin}\:\mathrm{ysin}\:\mathrm{z} \\ $$$$\mathrm{by}\:\mathrm{symetric}\:\begin{cases}{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x}=\mathrm{3sin}\:\mathrm{x}}\\{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{y}=\mathrm{3sin}\:\mathrm{y}}\\{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{z}=\mathrm{3sin}\:\mathrm{z}}\end{cases}…

Question-120773

Question Number 120773 by shaker last updated on 02/Nov/20 Answered by 675480065 last updated on 02/Nov/20 $$\mathrm{let}\:\mathrm{u}=\sqrt{\mathrm{x}} \\ $$$$\Rightarrow\:\mathrm{du}=\frac{\mathrm{1}}{\mathrm{2u}}\mathrm{dx} \\ $$$$\Rightarrow\:\mathrm{dx}=\mathrm{2udu} \\ $$$$\Rightarrow\:\mathrm{I}\:=\:\int\frac{\mathrm{e}^{\mathrm{u}} .\mathrm{e}^{\mathrm{u}^{\mathrm{2}} }…

5x-6-x-dx-

Question Number 186301 by Ilyos last updated on 03/Feb/23 $$\int\mathrm{5}{x}+\mathrm{6}^{{x}} {dx} \\ $$ Answered by mustafazaheen last updated on 03/Feb/23 $$=\:\:\mathrm{5}\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{6}^{{x}} }{{ln}\mathrm{6}}+{c} \\ $$…