Question Number 120721 by help last updated on 02/Nov/20 Commented by JDamian last updated on 02/Nov/20 $${the}\:{first}\:{range}\:\left({x}>{q}\right),\:{is}\:{it}\:{correct}? \\ $$ Commented by help last updated on…
Question Number 55185 by Gulay last updated on 19/Feb/19 Commented by Gulay last updated on 19/Feb/19 $$\mathrm{sir}\:\mathrm{pls}\:\mathrm{help}\:\mathrm{me} \\ $$ Commented by Gulay last updated on…
Question Number 120715 by help last updated on 02/Nov/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 120706 by ZiYangLee last updated on 02/Nov/20 $$\mathrm{If}\:{f}\left({x}\right)={x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{5},\:{f}\left(\mathrm{2}\right)=\mathrm{10},\:{f}\left(\mathrm{3}\right)=\mathrm{15} \\ $$$$\mathrm{find}\:{f}\left(\mathrm{9}\right)+{f}\left(−\mathrm{5}\right). \\ $$ Commented by liberty last updated on…
Question Number 120705 by ZiYangLee last updated on 02/Nov/20 $$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{curve}\:{y}=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{19}{x}+\mathrm{18} \\ $$$$\mathrm{does}\:\mathrm{not}\:\mathrm{intersect}\:\mathrm{the}\:\mathrm{line}\:{y}={x}+{k}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{integer}\:\mathrm{of}\:{k}. \\ $$ Commented by john santu last updated on 02/Nov/20…
Question Number 55166 by Gulay last updated on 18/Feb/19 Answered by kaivan.ahmadi last updated on 18/Feb/19 $$\mathrm{3}^{\mathrm{1}+{log}_{\mathrm{3}} \mathrm{2}} =\mathrm{3}^{{log}_{\mathrm{3}} \mathrm{3}+{log}_{\mathrm{3}} \mathrm{2}} =\mathrm{3}^{{log}_{\mathrm{3}} \mathrm{6}} =\mathrm{6} \\…
Question Number 55150 by naka3546 last updated on 18/Feb/19 Answered by tanmay.chaudhury50@gmail.com last updated on 18/Feb/19 $$\frac{\left(\mathrm{1}+{x}\right)+\left(\mathrm{1}+{y}\right)+\left(\mathrm{1}+{z}\right)}{\mathrm{3}}\geqslant\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{y}\right)\left(\mathrm{1}+{z}\right)}\:\geqslant\frac{\mathrm{3}}{\frac{\mathrm{1}}{\mathrm{1}+{x}}+\frac{\mathrm{1}}{\mathrm{1}+{y}}+\frac{\mathrm{1}}{\mathrm{1}+{z}}} \\ $$$$\mathrm{1}+\frac{{x}+{y}+{z}}{\mathrm{3}}\geqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\frac{{x}+{y}+{z}}{\mathrm{3}}\geqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}+{y}+{z}\geqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${now}…
Question Number 186223 by SANOGO last updated on 02/Feb/23 $$\int_{{o}} ^{+{oo}} {e}^{−{E}\left({x}\right){dx}} \\ $$ Answered by Mathspace last updated on 02/Feb/23 $${I}=\sum_{{n}=\mathrm{0}} ^{\infty} \int_{{n}} ^{{n}+\mathrm{1}}…
Question Number 186188 by aba last updated on 02/Feb/23 $$\mathrm{Prove}\:\mathrm{that}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{p}} {\prod}}\mathrm{tan}\left(\frac{\mathrm{k}\pi}{\mathrm{2p}+\mathrm{1}}\right)=\sqrt{\mathrm{2p}+\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 186187 by aba last updated on 02/Feb/23 $$\underset{\mathrm{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{k}} \left(_{\mathrm{2k}} ^{\mathrm{n}} \right)=? \\ $$ Commented by mr W last updated on 02/Feb/23…