Question Number 219801 by SdC355 last updated on 02/May/25 $$\underset{{h}\rightarrow\infty} {\mathrm{lim}}\:{h}^{\nu} {J}_{\nu} \left({h}\right)=?? \\ $$ Answered by MrGaster last updated on 02/May/25 $$\mathrm{lim}_{{h}\rightarrow\infty} \:{h}^{\nu} {J}_{\nu}…
Question Number 219796 by SdC355 last updated on 02/May/25 $$\mathrm{Solve} \\ $$$${y}^{\left(\mathrm{2}\right)} \left({t}\right)=\left({y}\left({t}\right)\right)^{\mathrm{2}} −{ay}^{\left(\mathrm{1}\right)} \left({t}\right)−{by}\left({t}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219797 by SdC355 last updated on 02/May/25 $$\mathrm{solve} \\ $$$$\left({y}^{\left(\mathrm{2}\right)} \left({t}\right)\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}+{y}\left({t}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219798 by SdC355 last updated on 02/May/25 $$\mathrm{solve}\: \\ $$$${y}^{\left(\mathrm{2}\right)} \left({t}\right)={y}^{\left(\mathrm{1}\right)} \left({t}\right){e}^{−{y}\left({t}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219799 by SdC355 last updated on 02/May/25 $${y}^{\left(\mathrm{2}\right)} \left({t}\right)+{y}\left({t}\right)=\mathrm{cos}\left({t}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219793 by SdC355 last updated on 02/May/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{e}^{−{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t}=? \\ $$ Answered by breniam last updated on 03/May/25 $$\underset{\mathrm{0}} {\overset{\infty}…
Question Number 219792 by SdC355 last updated on 02/May/25 $$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{{J}_{\mathrm{1}} \left({z}\right)}{{Y}_{\mathrm{0}} \left({z}\right)} \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{z}\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{z}^{\mathrm{2}} −\mathrm{cos}\left(\frac{{z}}{\mathrm{1}−{z}^{\mathrm{2}} }\right)}{{z}^{\mathrm{4}} } \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{J}_{\nu} \left({z}+{h}\right){Y}_{\nu} \left({z}\right)−{J}_{\nu} \left({z}\right){Y}_{\nu}…
Question Number 219794 by SdC355 last updated on 02/May/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{Y}_{\mathrm{0}} \left({t}\right){e}^{−\mathrm{3}{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219795 by SdC355 last updated on 02/May/25 $$\int_{\mathcal{D}=\left[\mathrm{0},\mathrm{1}\right]^{{N}} } \:\underset{{h}=\mathrm{1}} {\overset{{N}} {\prod}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{{h}} } \mathrm{d}{x}_{{h}} \\ $$ Answered by MrGaster last updated on 02/May/25…
Question Number 219709 by SdC355 last updated on 01/May/25 $$\mathrm{solve}\:\mathrm{Differantial}\:\mathrm{Equation} \\ $$$$\left({y}'\left({t}\right)\right)^{\mathrm{2}} =\mathrm{4}\left({y}\left({t}\right)\right)^{\mathrm{3}} −{ay}\left({t}\right)−{b}\:,\:\left\{{a},{b}\in\mathbb{C}\right\} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com