Menu Close

Category: None

lim-h-h-J-h-

Question Number 219801 by SdC355 last updated on 02/May/25 $$\underset{{h}\rightarrow\infty} {\mathrm{lim}}\:{h}^{\nu} {J}_{\nu} \left({h}\right)=?? \\ $$ Answered by MrGaster last updated on 02/May/25 $$\mathrm{lim}_{{h}\rightarrow\infty} \:{h}^{\nu} {J}_{\nu}…

lim-z-J-1-z-Y-0-z-lim-z-0-z-1-1-2-z-2-cos-z-1-z-2-z-4-lim-z-0-J-z-h-Y-z-J-z-Y-z-h-

Question Number 219792 by SdC355 last updated on 02/May/25 $$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{{J}_{\mathrm{1}} \left({z}\right)}{{Y}_{\mathrm{0}} \left({z}\right)} \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{z}\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{z}^{\mathrm{2}} −\mathrm{cos}\left(\frac{{z}}{\mathrm{1}−{z}^{\mathrm{2}} }\right)}{{z}^{\mathrm{4}} } \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{J}_{\nu} \left({z}+{h}\right){Y}_{\nu} \left({z}\right)−{J}_{\nu} \left({z}\right){Y}_{\nu}…