Menu Close

Category: None

can-someone-please-explain-how-can-i-write-limit-Z-in-the-menu-

Question Number 208045 by mathkun last updated on 03/Jun/24 $$\mathrm{can}\:\mathrm{someone}\:\mathrm{please}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{write}\:\mathrm{limit}\:\underline{\boldsymbol{\mathrm{Z}}}\underbrace{ _{} }\mathrm{in}\:\mathrm{the}\:\mathrm{menu}. \\ $$$$ \\ $$ Commented by Tinku Tara last updated on 03/Jun/24 https://static.tinkutara.com/equationeditorhelp.html Just view 5 minute tutorial video (video does not have any audio)…

we-have-y-f-x-function-if-we-transfer-its-graph-C-unit-vertically-and-gain-the-new-function-y-f-x-C-it-s-meant-y-is-increased-or-decreased-C-units-if-we-transfer-the-graph-of-considered-function

Question Number 208031 by Davidtim last updated on 02/Jun/24 $${we}\:{have}\:{y}={f}\left({x}\right)\:{function},\:{if}\:{we}\:{transfer} \\ $$$${its}\:{graph}\:{C}\:{unit}\:{vertically}\:{and}\:{gain} \\ $$$${the}\:{new}\:{function}\:{y}={f}\left({x}\right)\pm{C},\:{it}'{s}\:{meant} \\ $$$${y}\:{is}\:{increased}\:{or}\:{decreased}\:\:{C}\:{units}. \\ $$$${if}\:{we}\:{transfer}\:{the}\:{graph}\:{of}\:{considered} \\ $$$${function}\:{horizontally},\:{we}\:{gain}\:{the}\:{new}\:{function} \\ $$$${y}={f}\left({x}\pm{C}\right),\:{what}\:{does}\:{mean}\:{it}? \\ $$ Answered…

Question-207935

Question Number 207935 by meo last updated on 31/May/24 Answered by Frix last updated on 01/Jun/24 $$\forall{x}\in\mathbb{R}:\:{F}\left({x}\right)>\mathrm{0} \\ $$$${F}'\left({x}\right)=\mathrm{0} \\ $$$$\mathrm{2}{x}−\mathrm{1}−\frac{\mathrm{4}{x}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{5}}…

Question-207904

Question Number 207904 by Ahmed777hamouda last updated on 30/May/24 Commented by Ahmed777hamouda last updated on 30/May/24 $$\mathrm{H}{ow}\:\boldsymbol{\mathrm{prove}}\:\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} =\mathrm{2}\boldsymbol{\mathrm{I}}_{{o}} \boldsymbol{\mathrm{J}}_{{n}} \left(\boldsymbol{\mathrm{nx}}\right)\mathrm{cos}\:\left(\boldsymbol{\mathrm{n}}\theta_{\boldsymbol{\mathrm{g}}} +\boldsymbol{\mathrm{n}\theta}_{\boldsymbol{\mathrm{n}}} \right) \\ $$$$\boldsymbol{\mathrm{from}}\:\boldsymbol{\mathrm{fourier}}\:\boldsymbol{\mathrm{series}} \\…