Menu Close

Category: None

If-a-continuous-function-f-R-R-satisfies-0-1-f-x-dx-0-1-xf-x-dx-1-prove-that-0-1-f-x-2-dx-4-

Question Number 120089 by ZiYangLee last updated on 29/Oct/20 $$\mathrm{If}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{satisfies} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {xf}\left({x}\right){dx}=\mathrm{1} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({f}\left({x}\right)\right)^{\mathrm{2}} {dx}\geqslant\mathrm{4} \\ $$ Terms of…

Question-120071

Question Number 120071 by SOMEDAVONG last updated on 29/Oct/20 Answered by bramlexs22 last updated on 29/Oct/20 $$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{−\mathrm{1}+\frac{\mathrm{1}}{{x}}}{\mathrm{2}\left({x}−\mathrm{1}\right)}\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−{x}}{\mathrm{2}{x}\left({x}−\mathrm{1}\right)} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{−\mathrm{1}}{\mathrm{2}{x}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Terms…

Hello-please-I-experienced-a-little-difficulty-with-this-question-A-charge-Qa-20mC-is-located-at-6-4-7-and-a-charge-Qb-50mC-at-5-8-2-If-distances-are-given-in-meters-find-a-R-ab-b

Question Number 185601 by MCH last updated on 24/Jan/23 $${Hello}\:{please}\:{I}\:{experienced}\:{a}\:{little} \\ $$$$\:{difficulty}\:{with}\:{this}\:{question}.\: \\ $$$$ \\ $$$${A}\:{charge}\:{Qa}\:=−\mathrm{20}{mC}\:\:{is}\:{located}\:{at}\:\left(−\mathrm{6}\:\mathrm{4}\:\mathrm{7}\right)\:{and}\: \\ $$$${a}\:{charge}\:{Qb}=\mathrm{50}{mC}\:{at}\:\left(\mathrm{5}\:\mathrm{8}\:−\mathrm{2}\right).\: \\ $$$$\mathrm{I}{f}\:{distances}\:{are}\:{given}\:{in}\:{meters}\: \\ $$$${find}\:\left({a}\right)\overset{−} {{R}ab}\:\left({b}\right){Rab} \\ $$$$\:\left({c}\right)\:{The}\:{vector}\:{force}\:{exerted}\:{on}\:…

i-y-4y-5y-4sin-2-4x-ii-x-2-1-1-x-2-

Question Number 120050 by bramlexs22 last updated on 29/Oct/20 $$\:\left({i}\right)\:{y}''−\mathrm{4}{y}'+\mathrm{5}{y}=\mathrm{4sin}\:^{\mathrm{2}} \mathrm{4}{x} \\ $$$$\:\left({ii}\right)\:\frac{{x}}{\mathrm{2}}+\mathrm{1}\:=\:\sqrt{\mid\mathrm{1}−{x}^{\mathrm{2}} \mid}\: \\ $$ Answered by bemath last updated on 29/Oct/20 $$\left(\bullet\right)\:\frac{{x}+\mathrm{2}}{\mathrm{2}}\:=\:\sqrt{\mid\mathrm{1}−{x}^{\mathrm{2}} \mid}\:{defined}\:{on}\:{x}\:\geqslant−\mathrm{2}\:…

Suppose-that-R-gt-0-x-0-gt-0-and-x-n-1-1-2-R-x-n-x-n-n-0-Prove-For-n-1-x-n-gt-x-n-1-gt-R-and-x-n-R-1-2-n-x-0-R-2-x-0-

Question Number 120037 by floor(10²Eta[1]) last updated on 28/Oct/20 $$\mathrm{Suppose}\:\mathrm{that}\:\mathrm{R}>\mathrm{0},\:\mathrm{x}_{\mathrm{0}} >\mathrm{0},\:\mathrm{and} \\ $$$$\mathrm{x}_{\mathrm{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{R}}{\mathrm{x}_{\mathrm{n}} }+\mathrm{x}_{\mathrm{n}} \right),\:\mathrm{n}\geqslant\mathrm{0} \\ $$$$\mathrm{Prove}:\:\mathrm{For}\:\mathrm{n}\geqslant\mathrm{1},\:\mathrm{x}_{\mathrm{n}} >\mathrm{x}_{\mathrm{n}+\mathrm{1}} >\sqrt{\mathrm{R}}\:\mathrm{and} \\ $$$$\mathrm{x}_{\mathrm{n}} −\sqrt{\mathrm{R}}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\:\frac{\left(\mathrm{x}_{\mathrm{0}} −\sqrt{\mathrm{R}}\right)^{\mathrm{2}}…

f-x-cos-2pix-sin-2pix-x-x-find-R-f-

Question Number 185574 by mnjuly1970 last updated on 23/Jan/23 $$ \\ $$$$\:\:\:{f}\:\left({x}\:\right)=\:{cos}\left(\mathrm{2}\pi{x}\right)+\:{sin}\left(\mathrm{2}\pi{x}\right)\:+\sqrt{\:\lfloor{x}\rfloor\:+\lfloor−{x}\:\rfloor} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:{find}\:\:\:\:\:\:\:\:{R}_{\:{f}} \:=? \\ $$ Commented by mahdipoor last updated on…

Question-120028

Question Number 120028 by Don08q last updated on 28/Oct/20 Answered by bramlexs22 last updated on 29/Oct/20 $$\left({a}\right)\:{say}\:{three}\:{particular}\:{women}\:{is}\:\begin{cases}{{w}_{\mathrm{1}} }\\{{w}_{\mathrm{2}} }\\{{w}_{\mathrm{3}} }\end{cases} \\ $$$$\blacksquare={woman}\:{particular} \\ $$$$\Box=\:{the}\:{other}\:{person} \\…

Question-120016

Question Number 120016 by aurpeyz last updated on 28/Oct/20 Answered by mr W last updated on 28/Oct/20 $${S}=\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{16}} −\left(\mathrm{1}+{x}\right)^{\mathrm{6}} }{{x}} \\ $$$${C}_{\mathrm{7}} ^{\mathrm{16}} ={C}_{\mathrm{9}} ^{\mathrm{16}}…