Menu Close

Category: None

e-r-0-r-r-dr-r-1-1-0-s-1-s-s-1-e-sr-ds-

Question Number 219710 by SdC355 last updated on 01/May/25 $$\int_{\rho} ^{\:\infty} \:\frac{{e}^{{r}} \centerdot\Gamma\left(\mathrm{0},{r}\right)}{{r}}\:\mathrm{d}{r}=?? \\ $$$$\Gamma\left(\alpha,{r}\right)=\frac{\mathrm{1}}{\Gamma\left(\mathrm{1}−\alpha\right)}\centerdot\int_{\mathrm{0}} ^{\:\infty} \:\frac{\theta\left({s}−\mathrm{1}\right)}{{s}\left({s}−\mathrm{1}\right)^{\alpha} }{e}^{−{sr}} \mathrm{d}{s} \\ $$ Terms of Service Privacy…

f-w-0-s-1-s-s-1-e-sw-ds-s-0-s-lt-0-1-s-gt-0-

Question Number 219730 by SdC355 last updated on 01/May/25 $${f}\left({w}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\frac{\theta\left({s}−\mathrm{1}\right)}{{s}\left({s}−\mathrm{1}\right)^{\alpha} }{e}^{−{sw}} \:\mathrm{d}{s} \\ $$$$\hat {\theta}\left({s}\right)=\begin{cases}{\mathrm{0}\:\:{s}<\mathrm{0}}\\{\mathrm{1}\:\:{s}>\mathrm{0}}\end{cases} \\ $$ Terms of Service Privacy Policy Contact:…

Question-219642

Question Number 219642 by SdC355 last updated on 30/Apr/25 Answered by SdC355 last updated on 30/Apr/25 $$\mathrm{prove}\:\mathrm{G}\:\mathrm{function}\:\mathrm{equal}\:\mathrm{to}\:\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{e}^{−\omega{t}} }{{t}^{\mathrm{3}} +\mathrm{1}}\:\mathrm{d}{t}\: \\ $$ Terms of…

0-J-s-e-s-s-2-R-2-ds-R-R-R-0-

Question Number 219637 by SdC355 last updated on 30/Apr/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{J}_{\nu} \left({s}\right){e}^{−\mu{s}} }{\:\sqrt{{s}^{\mathrm{2}} +{R}^{\mathrm{2}} }}\mathrm{d}{s}\:,\:\left(\nu,\mu\in\mathbb{R}^{+} \:,\:\mathrm{R}\in\mathbb{R}^{+} \backslash\left\{\mathrm{0}\right\}\right) \\ $$ Terms of Service Privacy Policy…