Menu Close

Category: None

0-1-ln-2-1-x-1-x-dx-

Question Number 184098 by paul2222 last updated on 02/Jan/23 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)}{\mathrm{1}−\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}} \\ $$ Commented by paul2222 last updated on 02/Jan/23 $$\boldsymbol{\mathrm{let}}\:\mathrm{1}−\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{u}} \\ $$$$\int_{\mathrm{0}}…

dy-dx-y-y-2-find-y-

Question Number 184066 by Matica last updated on 02/Jan/23 $$\frac{{dy}}{{dx}}={y}\left({y}+\mathrm{2}\right).\:{find}\:\:{y}=? \\ $$ Answered by mr W last updated on 02/Jan/23 $$\int\frac{{dy}}{{y}\left({y}+\mathrm{2}\right)}=\int{dx} \\ $$$$\int\left(\frac{\mathrm{1}}{{y}}−\frac{\mathrm{1}}{{y}+\mathrm{2}}\right){dy}=\mathrm{2}\int{dx} \\ $$$$\mathrm{ln}\:{y}−\mathrm{ln}\:\left({y}+\mathrm{2}\right)=\mathrm{2}{x}+{C}_{\mathrm{1}}…

Question-118506

Question Number 118506 by meireza last updated on 18/Oct/20 Answered by Lordose last updated on 18/Oct/20 $$\sqrt{\mathrm{2}}\mathrm{sin}\left(\mathrm{x}°+\mathrm{15}°\right)=\mathrm{1} \\ $$$$\mathrm{Divide}\:\mathrm{by}\:\sqrt{\mathrm{2}} \\ $$$$\mathrm{sin}\left(\mathrm{x}°+\mathrm{15}°\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{take}\:\mathrm{sin}^{−\mathrm{1}} \:\mathrm{of}\:\mathrm{both}\:\mathrm{sides} \\…

0-1-x-1-x-1-1-ln-x-dx-

Question Number 184029 by SEKRET last updated on 02/Jan/23 $$\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\boldsymbol{\mathrm{x}}−\mathrm{1}}{\boldsymbol{\mathrm{x}}+\mathrm{1}}\centerdot\frac{\mathrm{1}}{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)}\:\boldsymbol{\mathrm{dx}}\:=? \\ $$ Answered by ARUNG_Brandon_MBU last updated on 02/Jan/23 $$\Omega\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alpha} −\mathrm{1}}{{x}+\mathrm{1}}\centerdot\frac{\mathrm{1}}{\mathrm{ln}{x}}{dx}…

1-x-7-x-x-10-1-dx-

Question Number 184031 by SEKRET last updated on 02/Jan/23 $$\:\int_{\mathrm{1}} ^{\infty} \:\frac{\boldsymbol{\mathrm{x}}^{\mathrm{7}} −\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}^{\mathrm{10}} −\mathrm{1}}\boldsymbol{\mathrm{dx}}\:=\:? \\ $$ Answered by ARUNG_Brandon_MBU last updated on 02/Jan/23 $$\int_{\mathrm{1}} ^{\infty}…