Menu Close

Category: None

If-f-x-ln-a-1-1-x-b-is-an-odd-function-then-find-the-value-of-a-b-

Question Number 184594 by CrispyXYZ last updated on 09/Jan/23 $$\mathrm{If}\:{f}\left({x}\right)=\mathrm{ln}\mid{a}+\frac{\mathrm{1}}{\mathrm{1}−{x}}\mid+{b}\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{function}, \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a},\:{b}. \\ $$ Answered by mr W last updated on 09/Jan/23 $${f}\left({x}\right)=−{f}\left(−{x}\right) \\ $$$$\mathrm{ln}\:\mid{a}+\frac{\mathrm{1}}{\mathrm{1}−{x}}\mid+{b}=−\mathrm{ln}\:\mid{a}+\frac{\mathrm{1}}{\mathrm{1}+{x}}\mid−{b}…

1-If-x-2-2-y-2-x-2-2-y-2-6-show-that-when-the-equation-is-simplified-it-can-be-express-as-x-2-9-y-2-5-1-2-find-the-value-of-n-such-that-the-linear-factors-of-the-form-x

Question Number 53500 by Otchere Abdullai last updated on 22/Jan/19 $$\mathrm{1}.\:{If}\:\:\sqrt{\left({x}+\mathrm{2}\right)^{\mathrm{2}\:} +{y}^{\mathrm{2}} }+\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{6} \\ $$$${show}\:{that}\:{when}\:{the}\:{equation}\:{is}\: \\ $$$${simplified},\:{it}\:{can}\:{be}\:{express}\:{as} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{9}}+\frac{{y}^{\mathrm{2}} }{\mathrm{5}}=\mathrm{1} \\ $$$$\mathrm{2}.\:{find}\:{the}\:{value}\:{of}\:{n}\:{such}\:{that}\:{the}…

Question-119032

Question Number 119032 by Algoritm last updated on 21/Oct/20 Answered by 1549442205PVT last updated on 22/Oct/20 $$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+…−\frac{\mathrm{1}}{\mathrm{2n}}=\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}+…+\frac{\mathrm{1}}{\mathrm{2n}} \\ $$$$\mathrm{Put}\:\mathrm{S}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+…−\frac{\mathrm{1}}{\mathrm{2n}} \\ $$$$\Rightarrow\:\mathrm{S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{2n}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2n}} \\ $$$$−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{2n}}\right) \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{2n}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2n}}…

Among-the-positive-integers-less-than-1200-how-many-of-them-are-relatively-prime-to-60-

Question Number 119035 by ZiYangLee last updated on 21/Oct/20 $$\mathrm{Among}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{less}\:\mathrm{than}\:\mathrm{1200}, \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{of}\:\mathrm{them}\:\mathrm{are}\:\mathrm{relatively}\:\mathrm{prime} \\ $$$$\mathrm{to}\:\mathrm{60}? \\ $$ Answered by floor(10²Eta[1]) last updated on 21/Oct/20 $$\mathrm{60}=\mathrm{2}^{\mathrm{2}} .\mathrm{3}.\mathrm{5}…

Question-119008

Question Number 119008 by zakirullah last updated on 21/Oct/20 Commented by zakirullah last updated on 21/Oct/20 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{initial}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{p}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{the}}\:\: \\ $$$$\boldsymbol{\mathrm{terminal}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{Q}}\:\boldsymbol{{whichever}}\:\boldsymbol{{is}}\:\boldsymbol{{missing}}? \\ $$$$\boldsymbol{{i}}.\:\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\:\left[−\mathrm{2},\mathrm{3}\right],\:\boldsymbol{{P}}\left(\mathrm{1},−\mathrm{2}\right) \\ $$$$\boldsymbol{{ii}}.\:\boldsymbol{{P}}\overset{\rightarrow} {\boldsymbol{{Q}}}\:=\left[\mathrm{4},−\mathrm{5}\right],\:\boldsymbol{{Q}}\left(−\mathrm{1},\mathrm{1}\right)…

Is-it-possible-to-calculate-the-derivative-of-a-function-involving-complex-numbers-Thanks-

Question Number 53455 by hassentimol last updated on 22/Jan/19 $$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{derivative} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{function}\:\mathrm{involving}\:\mathrm{complex} \\ $$$$\mathrm{numbers}\:?\:{Thanks} \\ $$ Commented by ajfour last updated on 22/Jan/19 $${study}\:{from}\:{Erwin}\:{Kreizig}'{s} \\…