Menu Close

Category: None

Question-205656

Question Number 205656 by SANOGO last updated on 26/Mar/24 Answered by TheHoneyCat last updated on 31/Mar/24 $$\left(\mathrm{2}\right)\Rightarrow\left(\mathrm{1}\right) \\ $$$$\mathrm{Soit}\:{c}\in\mathbb{R}^{\ast} \:\mathrm{tel}\:\mathrm{que}\:\forall{x}\in{X}\:\:\mid\mid{T}\left({x}\right)\mid\mid_{{Y}} \:\geqslant{c}\mid\mid{x}\mid\mid_{{X}} \\ $$$$\mathrm{Soit}\:\left({x},{x}'\right)\in{X}^{\mathrm{2}} \\ $$$$\mid\mid{T}\left({x}\right)−{T}\left({x}'\right)\mid\mid…

Question-205627

Question Number 205627 by lmcp1203 last updated on 25/Mar/24 Answered by Rasheed.Sindhi last updated on 27/Mar/24 $$\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet \\ $$$$\mathrm{2},\mathrm{6},\mathrm{12},\mathrm{20},\mathrm{30},…,{i}^{\mathrm{2}} +{i} \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}^{\mathrm{2}} +{i}\right)=\underset{{i}=\mathrm{1}}…

h-1-2h-1-h-h-1-2h-1-1-pls-help-me-

Question Number 205516 by MathedUp last updated on 23/Mar/24 $$\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\boldsymbol{\zeta}\left(\mathrm{2}{h}\right)−\mathrm{1}}{{h}}\:=\:…..? \\ $$$$\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\boldsymbol{\zeta}\left(\mathrm{2}{h}+\mathrm{1}\right)−\mathrm{1}\right)=……? \\ $$$$\mathrm{pls}\:\mathrm{help}\:\mathrm{me} \\ $$ Terms of Service Privacy Policy…

f-t-t-0-e-st-tanh-t-dt-lim-t-0-f-t-g-t-1-t-f-t-lim-n-g-n-h-1-n-1-h-

Question Number 205487 by MathedUp last updated on 22/Mar/24 $${f}\left({t}\right)={t}\centerdot\int_{\mathrm{0}} ^{\infty} \:{e}^{−{st}+\mathrm{tanh}\left({t}\right)} \mathrm{d}{t} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({t}\right)=??? \\ $$$$\mathrm{g}\left({t}\right)=\frac{\mathrm{1}}{{t}}{f}\left({t}\right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left\{\mathrm{g}\left({n}\right)−\underset{{h}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{h}}\right\}=??? \\ $$…

Question-205472

Question Number 205472 by SANOGO last updated on 21/Mar/24 Answered by TheHoneyCat last updated on 01/Apr/24 $$\mathrm{This}\:\mathrm{will}\:\mathrm{be}\:\mathrm{true}\:\mathrm{if}\:\left(\mathrm{and}\:\mathrm{only}\:\mathrm{if}\right)\:\mathrm{the}\:{A}_{{n}} \:\mathrm{are}\:\mathrm{all} \\ $$$$\mathrm{disjoint}. \\ $$$$\mathrm{If}\:\mathrm{they}\:\mathrm{are}\:\mathrm{not},\:\mathrm{take}\:{x}\in{A}_{{i}} \cap{A}_{{k}} \:\left(\mathrm{with}\:{k}\neq{i}\right) \\…

Can-t-understand-why-0-e-sin-z-e-cos-z-dz-isn-t-1-2-pi-I-0-1-L-0-1-3-104-I-Just-guessing-f-0-1-2-piI-0-1-L-0-1-not-lim-s-0-f-s-ex-find-Value-lim-z-0-g-z-g

Question Number 205396 by MathedUp last updated on 20/Mar/24 $$\mathrm{Can}'\mathrm{t}\:\mathrm{understand}\:\mathrm{why} \\ $$$$\int_{\mathrm{0}} ^{\infty} \left[{e}_{\:} ^{\mathrm{sin}\left({z}\right)} −{e}^{\mathrm{cos}\left({z}\right)} \right]\mathrm{d}{z}\:\mathrm{isn}'{t}\:\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\boldsymbol{\mathrm{I}}_{\mathrm{0}} ^{\:} \left(\mathrm{1}\right)−\boldsymbol{\mathrm{L}}_{\mathrm{0}} \left(\mathrm{1}\right)\right)\approx\mathrm{3}.\mathrm{104}… \\ $$$$\mathrm{I}\:\mathrm{Just}\:\mathrm{guessing}\:{f}\left(\mathrm{0}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\pi\boldsymbol{\mathrm{I}}_{\mathrm{0}} \left(\mathrm{1}\right)−\boldsymbol{\mathrm{L}}_{\mathrm{0}} \left(\mathrm{1}\right) \\…

Question-205371

Question Number 205371 by 073 last updated on 19/Mar/24 Commented by lepuissantcedricjunior last updated on 19/Mar/24 $$\boldsymbol{\mathrm{I}}=\int_{\mathrm{0}} ^{\mathrm{2}} \boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{8}\right)\boldsymbol{\mathrm{dx}} \\ $$$$\boldsymbol{\mathrm{posons}}\:\begin{cases}{\boldsymbol{\mathrm{u}}=\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{8}\right)}\\{\boldsymbol{\mathrm{v}}'=\mathrm{1}}\end{cases}\Leftrightarrow\begin{cases}{\boldsymbol{\mathrm{u}}'=\frac{\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} }{\left(\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{8}\right)\boldsymbol{\mathrm{ln}}\mathrm{10}}}\\{\boldsymbol{\mathrm{v}}=\boldsymbol{\mathrm{x}}}\end{cases}…