Menu Close

Category: None

Question-116516

Question Number 116516 by sandy_delta last updated on 04/Oct/20 Answered by som(math1967) last updated on 04/Oct/20 $$\left(\frac{\mathrm{1}}{\mathrm{a}+\mathrm{b}}+\frac{\mathrm{1}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{1}}{\mathrm{c}+\mathrm{a}}\right)\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)=\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)×\frac{\mathrm{7}}{\mathrm{10}} \\ $$$$\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{a}+\mathrm{b}}+\frac{\mathrm{a}+\mathrm{b}+{c}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{c}+\mathrm{a}}=\frac{\mathrm{49}}{\mathrm{10}} \\ $$$$\left[\because\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{7}\right] \\ $$$$\mathrm{1}+\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}+\mathrm{1}+\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}+\mathrm{1}+\frac{\mathrm{b}}{\mathrm{a}+\mathrm{c}}=\frac{\mathrm{49}}{\mathrm{10}} \\ $$$$\therefore\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{a}+\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{49}}{\mathrm{10}}−\mathrm{3}=\frac{\mathrm{19}}{\mathrm{10}}\mathrm{ans}…

give-x-R-and-prove-that-if-x-2x-3-than-x-3-

Question Number 116512 by bounhome last updated on 04/Oct/20 $${give}\:{x}\in{R}\:{and}\:{prove}\:{that}\:{if}\:\:{x}=\sqrt{\mathrm{2}{x}+\mathrm{3}}\:{than}\:{x}=\mathrm{3} \\ $$ Commented by bemath last updated on 04/Oct/20 $$\mathrm{x}^{\mathrm{2}} −\mathrm{2x}−\mathrm{3}=\mathrm{0}\:;\:\mathrm{x}\:\geqslant\mathrm{0} \\ $$$$\left(\mathrm{x}−\mathrm{3}\right)\left(\mathrm{x}+\mathrm{1}\right)\:=\:\mathrm{0}\Rightarrow\:\mathrm{x}\:=\:\mathrm{3} \\ $$…

give-a-Z-and-prove-that-if-a-2-4-than-a-3-can-t-6-

Question Number 116513 by bounhome last updated on 04/Oct/20 $${give}\:{a}\in{Z}\:{and}\:{prove}\:{that}\:{if}\:\left({a}−\mathrm{2}\right)\mid\mathrm{4}\:{than}\:\left({a}−\mathrm{3}\right){can}'{t}\mid\mathrm{6} \\ $$ Answered by floor(10²Eta[1]) last updated on 04/Oct/20 $$\mathrm{a}−\mathrm{2}\mid\mathrm{4}\Rightarrow\mathrm{a}−\mathrm{2}\in\left\{\pm\mathrm{1},\pm\mathrm{2},\pm\mathrm{4}\right\} \\ $$$$\Rightarrow\mathrm{a}\in\mathrm{A}:\left\{−\mathrm{2},\mathrm{0},\mathrm{1},\mathrm{3},\mathrm{4},\mathrm{6}\right\} \\ $$$$\mathrm{a}−\mathrm{3}\mid\mathrm{6}\Rightarrow\mathrm{a}−\mathrm{3}\in\left\{\pm\mathrm{1},\pm\mathrm{2},\pm\mathrm{3},\pm\mathrm{6}\right\} \\…

if-f-x-f-x-find-what-is-f-x-

Question Number 182039 by liuxinnan last updated on 03/Dec/22 $${if}\:{f}'''\left({x}\right)={f}\left({x}\right) \\ $$$${find}\:{what}\:{is}\:{f}\left({x}\right)\: \\ $$ Answered by FelipeLz last updated on 03/Dec/22 $${f}'''\left({x}\right)−{f}\left({x}\right)\:=\:\mathrm{0} \\ $$$${f}\left({x}\right)\:=\:{e}^{{rx}} \:\rightarrow\:{r}^{\mathrm{3}}…

Question-116486

Question Number 116486 by ZiYangLee last updated on 04/Oct/20 Answered by Dwaipayan Shikari last updated on 04/Oct/20 $$\frac{\mathrm{sin}\left(\mathrm{A}+\mathrm{B}\right)}{\mathrm{cos}\left(\mathrm{A}+\mathrm{B}\right)}=\frac{\mathrm{sinAcosB}+\mathrm{sinBcosA}}{\mathrm{cosAcosB}−\mathrm{sinAsinB}}=\frac{\frac{\mathrm{sinAcosB}}{\mathrm{cosAcosB}}+\frac{\mathrm{sinBcosA}}{\mathrm{cosAcosB}}}{\mathrm{1}−\mathrm{tanAtanB}} \\ $$$$=\frac{\mathrm{tanA}+\mathrm{tanB}}{\mathrm{1}−\mathrm{tanAtanB}} \\ $$ Answered by Olaf…

Question-116459

Question Number 116459 by nguyenthanh last updated on 04/Oct/20 Answered by bemath last updated on 04/Oct/20 $$\frac{\mathrm{1}−\mathrm{cos}\:\left(\frac{\pi}{\mathrm{12}}\right)\mathrm{sin}\:\mathrm{x}}{\mathrm{cos}\:\mathrm{x}}\:+\left(\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{2}}\:\right)\mathrm{sin}\:\left(\mathrm{x}−\frac{\mathrm{7}\pi}{\mathrm{12}}\right)\:=\:\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{12}}\right) \\ $$$$\frac{\mathrm{1}−\mathrm{cos}\:\left(\frac{\pi}{\mathrm{12}}\right)\mathrm{sin}\:\mathrm{x}}{\mathrm{cos}\:\mathrm{x}}\:+\:\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)\mathrm{sin}\:\left(\mathrm{x}−\frac{\mathrm{7}\pi}{\mathrm{12}}\right)=−\mathrm{sin}\:\left(\frac{\pi}{\mathrm{12}}\right) \\ $$$$\mathrm{1}+\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)\mathrm{cos}\:\mathrm{x}.\mathrm{sin}\:\left(\mathrm{x}−\frac{\mathrm{7}\pi}{\mathrm{12}}\right)=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{12}}\right)\mathrm{sin}\:\mathrm{x}−\mathrm{cos}\:\mathrm{x}.\mathrm{sin}\:\left(\frac{\pi}{\mathrm{12}}\right) \\ $$$$\mathrm{1}+\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{2}}.\left(\mathrm{2cos}\:\mathrm{x}\:\mathrm{sin}\:\left(\pi−\left(\mathrm{x}−\frac{\mathrm{7}\pi}{\mathrm{12}}\right)\right)=\mathrm{sin}\:\left(\mathrm{x}−\frac{\pi}{\mathrm{12}}\right)\right. \\ $$$$\mathrm{1}+\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{2}}.\left(\mathrm{2sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{12}}−\mathrm{x}\right).\mathrm{cos}\:\mathrm{x}\right)=\mathrm{sin}\:\left(\mathrm{x}−\frac{\pi}{\mathrm{12}}\right)…