Menu Close

Category: None

arccos-tg-3-2x-1-4x-2-dx-

Question Number 181879 by SEKRET last updated on 01/Dec/22 $$\:\:\:\int\:\:\frac{\boldsymbol{\mathrm{arccos}}\left(\boldsymbol{\mathrm{tg}}^{\mathrm{3}} \left(\mathrm{2}\boldsymbol{\mathrm{x}}\right)\right)}{\mathrm{1}+\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:\boldsymbol{\mathrm{dx}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ Terms of Service Privacy Policy…

4-1-3x-5-x-5-2-Sir-l-could-not-solve-this-question-plz-help-me-

Question Number 50795 by Gulay last updated on 20/Dec/18 $$\mathrm{4}+\frac{\mathrm{1}−\mathrm{3x}}{\mathrm{5}}=−\frac{\mathrm{x}−\mathrm{5}}{\mathrm{2}} \\ $$$$\mathrm{Sir}\:\mathrm{l}\:\mathrm{could}\:\mathrm{not}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{question} \\ $$$$\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$ Commented by hassentimol last updated on 20/Dec/18 $$\mathrm{4}+\left(\mathrm{1}/\mathrm{5}\right)−\left(\mathrm{3}/\mathrm{5}\right){x}=\left(−\mathrm{1}/\mathrm{2}\right){x}+\left(\mathrm{5}/\mathrm{2}\right) \\…

cos-1-tan-3-tan-x-dx-

Question Number 181853 by SEKRET last updated on 01/Dec/22 $$\: \\ $$$$\int\:\boldsymbol{\mathrm{cos}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{tan}}^{\mathrm{3}} \left(\boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{x}}\right)\right)\right)\:\boldsymbol{\mathrm{dx}}=\:? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ Commented by SEKRET…

arccos-tg-3-tg-x-dx-

Question Number 181851 by SEKRET last updated on 01/Dec/22 $$\:\:\:\int\:\boldsymbol{\mathrm{arccos}}\left(\boldsymbol{\mathrm{tg}}^{\mathrm{3}} \left(\boldsymbol{\mathrm{tg}}\left(\boldsymbol{\mathrm{x}}\right)\right)\right)\:\boldsymbol{\mathrm{dx}}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

xe-x-x-1-2-dx-

Question Number 116279 by mohammad17 last updated on 02/Oct/20 $$\int\:\frac{{xe}^{{x}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by Dwaipayan Shikari last updated on 02/Oct/20 $$\int\frac{\left(\mathrm{t}−\mathrm{1}\right)\mathrm{e}^{\left(\mathrm{t}−\mathrm{1}\right)} }{\mathrm{t}^{\mathrm{2}} }\mathrm{dt}=\frac{\mathrm{1}}{\mathrm{e}}\int\mathrm{e}^{\mathrm{t}}…