Question Number 213198 by Ismoiljon_008 last updated on 01/Nov/24 Answered by mr W last updated on 01/Nov/24 Commented by mr W last updated on 01/Nov/24…
Question Number 213175 by Davidtim last updated on 31/Oct/24 $${we}\:{can}\:{find}\:{tan}\mathrm{120}\:{by}\:{tan}\left(\mathrm{180}−\mathrm{60}\right) \\ $$$${but}\:{can}\:{not}\:{find}\:{by}\:{tan}\left(\mathrm{90}+\mathrm{30}\right)\:{why}? \\ $$ Answered by efronzo1 last updated on 31/Oct/24 $$\:\mathrm{tan}\:\mathrm{120}°=\:\mathrm{tan}\:\left(\mathrm{90}°+\mathrm{30}°\right)\:=−\:\mathrm{cot}\:\mathrm{30}°=−\sqrt{\mathrm{3}} \\ $$ Answered…
Question Number 213103 by MathematicalUser2357 last updated on 30/Oct/24 $$\mathrm{Hey}\:\mathrm{tinku}\:\mathrm{tara}, \\ $$$$\mathrm{I}\:\mathrm{couldn}'\mathrm{t}\:\mathrm{graph}\:\mathrm{the}\:\mathrm{equation}. \\ $$ Commented by Tinku Tara last updated on 30/Oct/24 $$\mathrm{We}\:\mathrm{are}\:\mathrm{aware}\:\mathrm{of}\:\mathrm{the}\:\mathrm{issue}.\:\mathrm{Will}\:\mathrm{be} \\ $$$$\mathrm{fixed}\:\mathrm{in}\:\mathrm{coming}\:\mathrm{days}.…
Question Number 213128 by klipto last updated on 30/Oct/24 $$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}^{+\:} } \frac{\mathrm{2}}{\mathrm{1}+\boldsymbol{\mathrm{e}}^{−\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}} } \\ $$ Answered by a.lgnaoui last updated on 30/Oct/24 $$\boldsymbol{\mathrm{lim}}_{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}^{+\:} } \frac{\mathrm{2}}{\mathrm{1}+\boldsymbol{\mathrm{e}}^{−\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}}…
Question Number 213096 by Tinku Tara last updated on 30/Oct/24 $$\mathrm{Hi}\:\mathrm{nikif90} \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{please}\:\mathrm{look}\:\mathrm{at}\:\mathrm{q212921}\:\mathrm{and} \\ $$$$\mathrm{provide}\:\mathrm{details}\:\mathrm{on}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{that} \\ $$$$\mathrm{are}\:\mathrm{facimg} \\ $$ Answered by issac last updated on…
Question Number 213055 by MrGaster last updated on 29/Oct/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{{x}} \mid\mathrm{sin}\:{t}\mid{dx}}{{x}} \\ $$$$ \\ $$ Answered by Ghisom last updated on…
Question Number 213034 by MrGaster last updated on 29/Oct/24 Commented by MrGaster last updated on 29/Oct/24 English: The diagram shows that if $AB > AC$, and $BD = CE$, $\angle BCD = \angle CBE$, find the measure of $\angle CFE$. Japanese: グラフによると、$AB>AC$で、$BD = CE$,$\angle BCD = \angle CBE$の場合、$\angle CFE$の測定値を求めます。 Commented by mr W last updated on 29/Oct/24…
Question Number 213007 by issac last updated on 30/Oct/24 $$\mathrm{can}'\mathrm{t}\:\mathrm{find}\:\:\mathrm{coefficient}\:{f}^{\left({n}\right)} \left(\alpha\right)\:\mathrm{of}\:{Y}_{\nu} \left({z}\right) \\ $$$$\mathrm{formal}\:\mathrm{power}\:\mathrm{series}\:\mathrm{of}\:{Y}_{\nu} \left({z}\right)\:\mathrm{is} \\ $$$${Y}_{\nu} \left({z}\right)=\underset{{h}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{Y}_{\nu} ^{\left({h}\right)} \left(\alpha\right)}{{h}!}\left({z}−\alpha\right)^{{h}} \\ $$$${But}..\:\mathrm{can}'\mathrm{t}\:\mathrm{generalize}\:\mathrm{coeff}\:{Y}_{\nu} ^{\left({h}\right)}…
Question Number 213003 by MrGaster last updated on 28/Oct/24 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{arctan}\:{x}\right)^{\mathrm{2}} {dx}. \\ $$$$ \\ $$ Answered by mathmax last updated on…
Question Number 212992 by CrispyXYZ last updated on 28/Oct/24 $${a}>\mathrm{0}.\:{b}>\mathrm{0}.\:{a}+{b}=\mathrm{2}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:{a}^{\sqrt{{a}}} {b}^{\sqrt{{b}}} . \\ $$ Answered by Ghisom last updated on 28/Oct/24 $${b}=\mathrm{2}−{a} \\…