Question Number 206020 by NANIGOPAL last updated on 05/Apr/24 Answered by cortano12 last updated on 05/Apr/24 $$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\left(\frac{\mathrm{2tan}\:{x}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} {x}}\:−\mathrm{2tan}\:{x}\right)}{\mathrm{4sin}\:^{\mathrm{4}} {x}} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}\mathrm{tan}\:{x}\left(\mathrm{1}−\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} {x}\right)\right)}{\mathrm{4sin}\:^{\mathrm{4}} {x}}…
Question Number 205993 by otchereabdullai@gmail.com last updated on 04/Apr/24 $$\:{Given}\:{that}\:\left(\mathrm{3}−\sqrt{{n}}\right)^{\mathrm{2}} ={m}−\mathrm{6}\sqrt{\mathrm{2}}\:{where} \\ $$$${m},{n}\:{are}\:{positive}\:{integers}\:{find}\:{m}−{n} \\ $$ Answered by A5T last updated on 04/Apr/24 $$\mathrm{9}+{n}−\mathrm{6}\sqrt{{n}}={m}−\mathrm{6}\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{9}+{n}={m}\:\wedge\:{n}=\mathrm{2}\Rightarrow{m}−{n}=\mathrm{9} \\ $$…
Question Number 206007 by SANOGO last updated on 04/Apr/24 $$\left({E},<,>\:\right):\:\:\:{prouve} \\ $$$$<{x},{y}>=\frac{\mathrm{1}}{\mathrm{4}}\underset{{k}={o}} {\overset{\mathrm{3}} {\sum}}{i}^{{k}} \mid\mid{x}\:+\:{i}^{{k}} {y}\mid\mid^{\mathrm{2}} \\ $$ Commented by Berbere last updated on 04/Apr/24…
Question Number 205938 by mokys last updated on 03/Apr/24 $$\frac{{dx}}{{dt}}=\:{y}+\mathrm{4}{z}\:….\left(\mathrm{1}\right) \\ $$$$\frac{{dy}}{{dt}}\:=\:{z}−{x}…..\left(\mathrm{2}\right) \\ $$$$\frac{{dz}}{{dt}}\:=\:{x}\:−\:{y}….\left(\mathrm{3}\right) \\ $$$${solve}\:{the}\:{sistem}\:{by}\:{operator}\:\left(\:{elemination}\:{method}\:\right) \\ $$$$ \\ $$$$ \\ $$ Terms of Service…
Question Number 205975 by Tinku Tara last updated on 03/Apr/24 $$\mathrm{As}\:\mathrm{reported}\:\mathrm{some}\:\mathrm{users}\:\mathrm{uploaded} \\ $$$$\mathrm{wrong}\:\mathrm{pictures}. \\ $$$$\mathrm{Priviledge}\:\mathrm{of}\:\mathrm{following}\:\mathrm{users}\:\mathrm{are} \\ $$$$\mathrm{now}\:\mathrm{elevated}\:\mathrm{so}\:\mathrm{that}\:\mathrm{they}\:\mathrm{can}\:\mathrm{delete} \\ $$$$\mathrm{any}\:\mathrm{post}. \\ $$$$ \\ $$$$\mathrm{mr}\:\mathrm{W} \\ $$$$\mathrm{Rasheed}\:\mathrm{Sindhi}…
Question Number 205964 by Frix last updated on 03/Apr/24 $$\mathrm{To}\:\mathrm{Tinkutara} \\ $$$$\mathrm{Please}\:\mathrm{remove}\:\mathrm{the}\:\mathrm{user}\:“\mathrm{MathedUp}''.\:\mathrm{He} \\ $$$$\mathrm{had}\:\mathrm{this}\:\mathrm{profile}\:\mathrm{picture}\:\mathrm{and}\:\mathrm{now}\:\mathrm{he}\:\mathrm{uploaded} \\ $$$$\mathrm{porn}\:\mathrm{pictures}.\:\mathrm{I}\:\mathrm{made}\:\mathrm{screenshots}\:\mathrm{in}\:\mathrm{case} \\ $$$$\mathrm{he}\:\mathrm{deletes}\:\mathrm{those}\:\mathrm{before}\:\mathrm{you}\:\mathrm{noticed}. \\ $$ Commented by Tinku Tara last…
Question Number 205904 by RoseAli last updated on 02/Apr/24 Answered by mr W last updated on 02/Apr/24 $${a}+{b}+{c}=\mathrm{2} \\ $$$$\sqrt[{\mathrm{3}}]{{abc}}\leqslant\frac{{a}+{b}+{c}}{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${abc}=\left(\sqrt[{\mathrm{3}}]{{abc}}\right)^{\mathrm{3}} \leqslant\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} =\frac{\mathrm{8}}{\mathrm{27}} \\…
Question Number 205866 by RoseAli last updated on 01/Apr/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 205862 by MathedUp last updated on 01/Apr/24 $$\mathrm{can}\:\mathrm{Solve}\:\mathrm{Diff}\:\mathrm{equa} \\ $$$$\left(\frac{\mathrm{d}{y}\left({t}\right)}{\mathrm{d}{t}}\right)^{\mathrm{2}} +\mathrm{4}{y}\left({t}\right)=\mathrm{8}{t}^{\mathrm{2}} −\mathrm{32}{t}+\mathrm{28} \\ $$$$\mathrm{Not}\:\mathrm{assuming}\:{y}\left({t}\right)={at}^{\mathrm{2}} +{bt}+{c} \\ $$$$\mathrm{and}\:\mathrm{Not}\:\mathrm{use}\:\mathrm{Rk}−\mathrm{4}\:\mathrm{method}?? \\ $$$$\left(\mathrm{meaning}\:\mathrm{can}\:\mathrm{we}\:\mathrm{get}\:\mathrm{closed}\:\mathrm{form}\:\mathrm{soultion}\right) \\ $$ Terms of…
Question Number 205823 by MathedUp last updated on 31/Mar/24 $$\mathrm{Error}\:\mathrm{Report} \\ $$$$\mathrm{Expression}\:\mathrm{is}\:\mathrm{Broken} \\ $$$${F}\left({s}\right)=\frac{\mathrm{1}}{\mathrm{2}{s}\sqrt{\pi}\centerdot\mathrm{sgn}\left({m}\right)}\mathrm{G}_{\mathrm{1},\mathrm{3}} ^{\mathrm{3},\mathrm{1}} \left(\left(\frac{\mathrm{2}}{{ms}}\right)^{\mathrm{2}} ;\cancel{\underbrace{\llcorner}}\right. \\ $$$$\mathrm{right}\:\mathrm{matrix}\:\mathrm{button}\:\mathrm{dosen}'\mathrm{t}\:\mathrm{work} \\ $$$$\begin{bmatrix}{{a}}\\{{b}}\end{bmatrix}\:\begin{vmatrix}{{a}}\\{{d}}\end{vmatrix}\:\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}\:\:\begin{cases}{\alpha}\\{\beta}\end{cases}\:\:,\:\left.\begin{matrix}{{u}}\\{{v}}\end{matrix}\right\}\:\begin{array}{|c|c|}{\mathrm{12345}}\\{\mathrm{98765}}\\\hline\end{array} \\ $$$$\mathrm{these}\:\mathrm{Expressions}\:\mathrm{come}\:\mathrm{out}\:\mathrm{normally} \\ $$$$\cancel{\underbrace{\llcorner}}…