Menu Close

Category: None

Can-t-understand-why-0-e-sin-z-e-cos-z-dz-isn-t-1-2-pi-I-0-1-L-0-1-3-104-I-Just-guessing-f-0-1-2-piI-0-1-L-0-1-not-lim-s-0-f-s-ex-find-Value-lim-z-0-g-z-g

Question Number 205396 by MathedUp last updated on 20/Mar/24 $$\mathrm{Can}'\mathrm{t}\:\mathrm{understand}\:\mathrm{why} \\ $$$$\int_{\mathrm{0}} ^{\infty} \left[{e}_{\:} ^{\mathrm{sin}\left({z}\right)} −{e}^{\mathrm{cos}\left({z}\right)} \right]\mathrm{d}{z}\:\mathrm{isn}'{t}\:\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\boldsymbol{\mathrm{I}}_{\mathrm{0}} ^{\:} \left(\mathrm{1}\right)−\boldsymbol{\mathrm{L}}_{\mathrm{0}} \left(\mathrm{1}\right)\right)\approx\mathrm{3}.\mathrm{104}… \\ $$$$\mathrm{I}\:\mathrm{Just}\:\mathrm{guessing}\:{f}\left(\mathrm{0}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\pi\boldsymbol{\mathrm{I}}_{\mathrm{0}} \left(\mathrm{1}\right)−\boldsymbol{\mathrm{L}}_{\mathrm{0}} \left(\mathrm{1}\right) \\…

Question-205371

Question Number 205371 by 073 last updated on 19/Mar/24 Commented by lepuissantcedricjunior last updated on 19/Mar/24 $$\boldsymbol{\mathrm{I}}=\int_{\mathrm{0}} ^{\mathrm{2}} \boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{8}\right)\boldsymbol{\mathrm{dx}} \\ $$$$\boldsymbol{\mathrm{posons}}\:\begin{cases}{\boldsymbol{\mathrm{u}}=\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{8}\right)}\\{\boldsymbol{\mathrm{v}}'=\mathrm{1}}\end{cases}\Leftrightarrow\begin{cases}{\boldsymbol{\mathrm{u}}'=\frac{\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} }{\left(\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{8}\right)\boldsymbol{\mathrm{ln}}\mathrm{10}}}\\{\boldsymbol{\mathrm{v}}=\boldsymbol{\mathrm{x}}}\end{cases}…

x-t-c-tx-t-c-is-constant-1-Find-x-t-2-Find-x-t-when-x-0-x-0-

Question Number 205172 by shunmisaki007 last updated on 12/Mar/24 $${x}\left({t}\right)={c}+{tx}'\left({t}\right)\:\mid\:{c}\:\mathrm{is}\:\mathrm{constant}. \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Find}\:{x}\left({t}\right). \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Find}\:{x}\left({t}\right)\:\mathrm{when}\:{x}\left(\mathrm{0}\right)={x}_{\mathrm{0}} . \\ $$ Commented by lepuissantcedricjunior last updated on 12/Mar/24 $$\boldsymbol{{x}}\left(\boldsymbol{{t}}\right)=\boldsymbol{{c}}+\boldsymbol{{tx}}'\left(\boldsymbol{{t}}\right)\:\boldsymbol{{c}}\in\mathbb{R}…

A-lim-x-0-1-cos2x-2x-2-lim-x-0-2sin-2-x-2x-2-lim-x-0-sinx-x-2-1-B-lim-x-0-1-xcotx-lim-x-0-tanx-x-lim-x-0-sinx-x-1-cosx-1-

Question Number 205138 by Thokna last updated on 10/Mar/24 $${A}=\underset{{x}\rightarrow\mathrm{0}\:\:} {\mathrm{lim}}\frac{\mathrm{1}−\mathrm{cos2}{x}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2sin}^{\mathrm{2}} {x}}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}{x}}{{x}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${B}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}\mathrm{cot}{x}} \\…