Question Number 203354 by SEKRET last updated on 19/Jan/24 $$. \\ $$ Answered by Rasheed.Sindhi last updated on 17/Jan/24 $${Can}\:{be}\:{observed}\:{after}\:{some}\: \\ $$$${experiments}\:{that}: \\ $$$$\mathrm{8}^{{r}+\mathrm{20}{q}} \equiv\mathrm{8}^{{r}}…
Question Number 203374 by otchereabdullai@gmail.com last updated on 17/Jan/24 Answered by Calculusboy last updated on 18/Jan/24 $$\boldsymbol{{Solution}}:\:\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\boldsymbol{{tan}}\mathrm{5}\boldsymbol{{x}}}{\mathrm{3}\boldsymbol{{x}}}\:\:\:\left(\boldsymbol{{by}}\:\boldsymbol{{using}}\:\boldsymbol{{algebraic}}\:\boldsymbol{{methods}}\right) \\ $$$$\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\boldsymbol{{tan}}\mathrm{5}\boldsymbol{{x}}}{\mathrm{3}\boldsymbol{{x}}}×\frac{\mathrm{5}\boldsymbol{{x}}}{\mathrm{5}\boldsymbol{{x}}}=\frac{\mathrm{5}\boldsymbol{{x}}}{\mathrm{3}\boldsymbol{{x}}}×\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\boldsymbol{{tan}}\mathrm{5}\boldsymbol{{x}}}{\mathrm{5}\boldsymbol{{x}}} \\ $$$$\boldsymbol{{NB}}:\:\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\boldsymbol{{tanax}}}{\boldsymbol{{x}}}=\mathrm{1}\:\:\boldsymbol{{then}}\:\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}}…
Question Number 203336 by yaslm last updated on 16/Jan/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 203313 by CrispyXYZ last updated on 16/Jan/24 $${a}_{{n}+\mathrm{1}} ={a}_{{n}} ^{\mathrm{2}} +\mathrm{2}{a}_{{n}} −\mathrm{2},\:{a}_{\mathrm{1}} =\mathrm{3}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\Sigma\:\frac{\mathrm{1}}{{a}_{{n}} +\mathrm{2}}\:\leqslant\:\frac{\mathrm{3}}{\mathrm{10}}. \\ $$ Answered by witcher3 last updated…
Question Number 203301 by MathematicalUser2357 last updated on 15/Jan/24 $$\mathrm{is} \\ $$$$\int\sqrt{{x}}{e}^{−{x}} {dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\mathrm{2}}{\mathrm{2}{k}+\mathrm{1}}\right){x}^{{n}} \sqrt{{x}}{e}^{−{x}} \right)+{C}? \\ $$ Answered by…
Question Number 203242 by sulaymonnorboyev140 last updated on 13/Jan/24 $${sin}\mathrm{6}°\centerdot{sin}\mathrm{12}°\centerdot{sin}\mathrm{24}°\centerdot{sin}\mathrm{28}° \\ $$ Answered by MathematicalUser2357 last updated on 15/Jan/24 $$\mathrm{4}.\mathrm{1498}×\mathrm{10}^{−\mathrm{3}} \\ $$ Terms of Service…
Question Number 203270 by MrGHK last updated on 13/Jan/24 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{last}}\:\mathrm{4}\:\boldsymbol{\mathrm{digits}}\:\boldsymbol{\mathrm{of}}\:\mathrm{2024}^{\mathrm{2023}} \\ $$ Answered by Frix last updated on 14/Jan/24 $$\mathrm{Last}\:\mathrm{4}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{2024}^{{n}} \\ $$$${n}=\mathrm{1}\:\mathrm{2024} \\ $$$$\mathrm{Then}\:\mathrm{a}\:\mathrm{loop}\:\mathrm{of}\:\mathrm{length}\:\mathrm{50} \\…
Question Number 203234 by naka3546 last updated on 13/Jan/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 203199 by MathedUp last updated on 12/Jan/24 $$\mathrm{Let}'{s}\:\mathrm{define}\:\mathrm{linear}\:\mathrm{Operator}\:\boldsymbol{\mathcal{L}}\:\mathrm{as}\:\boldsymbol{\mathcal{L}}=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{st}} \centerdot \\ $$$$\boldsymbol{\mathcal{L}}\left\{{W}\left({t}\right)\right\}=??? \\ $$$${W}\left({t}\right)\:\mathrm{is}\:\mathrm{inverse}\:\mathrm{function}\:\mathrm{of}\:{y}\left({t}\right)={te}^{{t}} \:,\:{t}\in\left[−\frac{\mathrm{1}}{{e}},\infty\right) \\ $$ Commented by shunmisaki007 last updated…
Question Number 203192 by MrGHK last updated on 12/Jan/24 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{last}}\:\boldsymbol{\mathrm{four}}\:\boldsymbol{\mathrm{digits}}\:\boldsymbol{\mathrm{of}}\:\mathrm{2022}^{\mathrm{2023}} +\mathrm{2023}^{\mathrm{2022}} \\ $$ Answered by AST last updated on 12/Jan/24 $${x}=\mathrm{2022}^{\mathrm{2023}} +\mathrm{2023}^{\mathrm{2022}} \overset{\mathrm{16}} {\equiv}\mathrm{6}^{\mathrm{2023}} +\mathrm{7}^{\mathrm{2022}}…