Menu Close

Category: None

Question-204337

Question Number 204337 by SANOGO last updated on 13/Feb/24 Answered by witcher3 last updated on 13/Feb/24 $$\left(\mathrm{3}\right)\Rightarrow\left(\mathrm{2}\right) \\ $$$$\mathrm{soitU}\:\mathrm{un}\:\mathrm{ouvert}\:\mathrm{de}\:\mathrm{E}\: \\ $$$$\exists\:\mathrm{existe}\:\mathrm{V}\:\mathrm{un}\:\mathrm{ouvert}\:\mathrm{de}\:\mathrm{F} \\ $$$$\mathrm{t}\:\mathrm{elle}\:\mathrm{Que}\:\mathrm{U}=\mathrm{f}^{−} \left(\mathrm{V}\right);\mathrm{car}\:\mathrm{f}\:\mathrm{et}\:\mathrm{bijective}\:\mathrm{donc}\:\mathrm{f}^{−} \\…

Question-204302

Question Number 204302 by MASANJAJJ last updated on 11/Feb/24 Answered by Frix last updated on 11/Feb/24 $$\mathrm{Cuboid}\:\mathrm{length}={l}\:\mathrm{width}={w}\:\mathrm{height}={h} \\ $$$$\mathrm{Floor}\:\left(=\mathrm{ceiling}\right)\:={lw} \\ $$$$\mathrm{Lateral}\:\mathrm{surface}\:=\mathrm{2}{h}\left({l}+{w}\right) \\ $$ Terms of…

cos-x-cos-3x-cos-5x-2-1-sin-x-sin3x-sin-5x-1-tan-3x-

Question Number 204278 by liuxinnan last updated on 11/Feb/24 $$\mathrm{cos}\:{x}+\mathrm{cos}\:\mathrm{3}{x}+\mathrm{cos}\:\mathrm{5}{x}=\sqrt{\mathrm{2}}+\mathrm{1} \\ $$$$\mathrm{sin}\:{x}+\mathrm{sin3}{x}+\:\mathrm{sin}\:\mathrm{5}{x}=\mathrm{1} \\ $$$$\mathrm{tan}\:\mathrm{3}{x}=? \\ $$ Commented by mr W last updated on 11/Feb/24 $${eq}.\left({i}\right)\:{and}\:{eq}.\left({ii}\right)\:{are}\:{not}\:{consistent}.…

ln-1-x-2-dx-

Question Number 204264 by SANOGO last updated on 10/Feb/24 $$\underset{} {\int}{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$ Answered by witcher3 last updated on 10/Feb/24 $$\mathrm{by}\:\mathrm{part}\:\mathrm{u}=\mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right);\mathrm{v}'\left(\mathrm{x}\right)=\mathrm{1} \\ $$$$=\mathrm{xln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}}…

Question-204262

Question Number 204262 by DEGWE last updated on 10/Feb/24 Answered by Frix last updated on 10/Feb/24 $$\mathrm{Charles}−\mathrm{Ange}\:\mathrm{LAISANT}\:\left(\mathrm{1905}\right): \\ $$$$\int{f}^{−\mathrm{1}} \left({x}\right){dx}={xf}^{−\mathrm{1}} \left({x}\right)−\left({F}\circ{f}^{−\mathrm{1}} \right)\left({x}\right)+{C} \\ $$$$\mathrm{with}\:{F}\left({x}\right)=\int{f}\left({x}\right){dx} \\…