Menu Close

Category: None

lim-x-1-1-x-x-2-e-x-

Question Number 212798 by MrGaster last updated on 24/Oct/24 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{\frac{{x}^{\mathrm{2}} }{{e}^{{x}} }} =? \\ $$ Answered by mehdee7396 last updated on 24/Oct/24 $${lim}_{{x}\rightarrow\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)=\mathrm{1}\:\:\:\:\&\:\:\:\:{lim}_{{x}\rightarrow\infty}…

Let-f-x-There-is-a-secondorder-continuoust-derivaive-t-x-2-y-2-g-x-y-f-1-r-ask-2-g-x-2-2-g-y-2-

Question Number 212788 by MrGaster last updated on 24/Oct/24 $$ \\ $$$${Let}\:{f}\left({x}\right)\:\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{secondorder}\:\mathrm{continuoust} \\ $$$$\mathrm{derivaive},{t}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} },{g}\left({x},{y}\right)={f}\left(\frac{\mathrm{1}}{{r}}\right),\mathrm{ask}\:\frac{\partial^{\mathrm{2}} {g}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {g}}{\partial{y}^{\mathrm{2}} }. \\ $$ Terms of Service…

Question-212816

Question Number 212816 by Akayx last updated on 24/Oct/24 Answered by mahdipoor last updated on 24/Oct/24 $${f}\left({t}\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{2}\left({t}−\mathrm{4}{k}\right)\left({u}_{\mathrm{4}{k}} −{u}_{\mathrm{4}{k}+\mathrm{2}} \right)= \\ $$$$\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\left({t}−\mathrm{4}{k}\right){u}_{\mathrm{4}{k}}…

i-generalized-Bessel-function-s-Laplace-Transform-L-TJ-z-s-s-2-1-s-2-1-s-0-R-L-T-Y-z-cot-pi-s-s-2-1-s-2-1-csc-pi-s-s-2-1

Question Number 212765 by issac last updated on 23/Oct/24 $$\mathrm{i}\:\:\mathrm{generalized}\:\boldsymbol{\mathrm{Bessel}}\:\boldsymbol{\mathrm{function}}'\mathrm{s} \\ $$$$\mathrm{Laplace}\:\mathrm{Transform} \\ $$$$\mathrm{L}.\mathrm{T}{J}_{\nu} \left({z}\right)=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\:,\:{s}\in\left[\mathrm{0},\infty\right)\:,\:\nu\in\mathbb{R} \\ $$$$\mathrm{L}.\mathrm{T}\:{Y}_{\nu} \left({z}\right)=\frac{\mathrm{cot}\left(\pi\nu\right)\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}−\frac{\mathrm{csc}\left(\pi\nu\right)\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{\nu}…

prove-the-Following-Equation-J-z-and-Y-z-are-Bessel-function-J-1-2-z-1-1-Y-1-2-z-Y-1-2-z-1-J-1-2-z-Z-Do-Not-prove-using-the-equations-pres

Question Number 212648 by issac last updated on 20/Oct/24 $$\mathrm{prove}\:\mathrm{the}\:\mathrm{Following}\:\mathrm{Equation}. \\ $$$$\:{J}_{\nu} \left({z}\right)\:\mathrm{and}\:{Y}_{\nu} \left({z}\right)\:\mathrm{are}\:\:\mathrm{Bessel}\:\mathrm{function} \\ $$$${J}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)=\left(−\mathrm{1}\right)^{\nu+\mathrm{1}} {Y}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right) \\ $$$${Y}_{−\nu−\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right)=\left(−\mathrm{1}\right)^{\nu} {J}_{\nu+\frac{\mathrm{1}}{\mathrm{2}}} \left({z}\right) \\…